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Abstract 

Background:  Next-generation sequencing pipelines often perform error correction 
as a preprocessing step to obtain cleaned input data. State-of-the-art error correction 
programs are able to reliably detect and correct the majority of sequencing errors. 
However, they also introduce new errors by making false-positive corrections. These 
correction mistakes can have negative impact on downstream analysis, such as k-mer 
statistics, de-novo assembly, and variant calling. This motivates the need for more 
precise error correction tools.

Results:  We present CARE 2.0, a context-aware read error correction tool based on 
multiple sequence alignment targeting Illumina datasets. In addition to a number 
of newly introduced optimizations its most significant change is the replacement of 
CARE 1.0’s hand-crafted correction conditions with a novel classifier based on random 
decision forests trained on Illumina data. This results in up to two orders-of-magnitude 
fewer false-positive corrections compared to other state-of-the-art error correction 
software. At the same time, CARE 2.0 is able to achieve high numbers of true-positive 
corrections comparable to its competitors. On a simulated full human dataset with 
914M reads CARE 2.0 generates only 1.2M false positives (FPs) (and 801.4M true posi-
tives (TPs)) at a highly competitive runtime while the best corrections achieved by 
other state-of-the-art tools contain at least 3.9M FPs and at most 814.5M TPs. Better 
de-novo assembly and improved k-mer analysis show the applicability of CARE 2.0 to 
real-world data.

Conclusion:  False-positive corrections can negatively influence down-stream analysis. 
The precision of CARE 2.0 greatly reduces the number of those corrections compared 
to other state-of-the-art programs including BFC, Karect, Musket, Bcool, SGA, and 
Lighter. Thus, higher-quality datasets are produced which improve k-mer analysis 
and de-novo assembly in real-world datasets which demonstrates the applicability of 
machine learning techniques in the context of sequencing read error correction. CARE 
2.0 is written in C++/CUDA for Linux systems and can be run on the CPU as well as on 
CUDA-enabled GPUs. It is available at https://​github.​com/​fkall​en/​CARE.
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Background
Modern sequencing technologies can produce high-coverage datasets consisting of 
many millions or even billions of short sequencing reads. Produced reads, however, are 
not perfect but are affected by noise which manifests in the form of sequencing errors. 
Such errors can affect down-stream analysis in a negative way. Error correction software 
is often employed to remove many of these sequencing errors making it an important 
building block in next-generation sequencing (NGS) processing pipelines including 
genome assembly [1] and SNP calling [2].

Current state-of-the-art error correctors are often classified by their underlying algo-
rithmic approach into k-mer based (1) and MSA-based (2) methods. 

1	 In a k-mer based approach the k-mer spectrum of a collection of sequencing reads 
is inspected to identify k-mers which are error-free with high confidence, so-called 
solid k-mers. k-mers which are not solid are called weak. Often, k-mers are distin-
guished as solid or weak based on their frequency in the dataset given a supplied 
frequency threshold. k-mers which reach the threshold are considered solid. k-mer 
based error correction algorithms typically try to replace weak k-mers by similar 
solid k-mers. While this approach is simple and fast, it usually suffers from a great 
number of false-positive (FP) corrections because low frequency correct, but weak, 
k-mers may be changed into erroneous, but solid k-mers which appear more often. 
Due to its simplicity, this approach is used in many error correction tools such as 
SGA-EC [3], Musket [4], RACER [5], Lighter [6], Blue [7], BFC [8], BLESS [9], and 
RECKONER [10].

2	 MSA-based algorithms identify groups of similar sequences and arrange them in a 
multiple sequence alignment (MSA). In contrast to changing individual k-mers in 
isolation, MSA-based error correction utilizes the additional information contained 
in the MSA, such as per-column coverage, and sequence contents of positions sur-
rounding a potentially erroneous position. This typically allows for higher error cor-
rection precision. However, a major drawback of the MSA-based approach is its high 
computational complexity to construct (approximate) MSAs. The first MSA-based 
error correctors specifically designed for Illumina data were Coral [11] and ECHO 
[12]. More recent examples of alignment-based error correctors are Fiona [13], 
Karect [14], Bcool [15], BrownieCorrector [16], and CARE [17]. These tools can be 
further distinguished by their utilized data structures (such as suffix trees/arrays, 
hash tables, or de Bruijn graphs) and their detailed correction heuristics/policies.

CARE is an MSA-based error correction tool which performs highly accurate correc-
tions, with up to two orders-of-magnitude smaller FP-rate on average compared to other 
state-of-the-art programs. Furthermore, CARE is able to utilize CUDA-enabled GPUs to 
speed up its computation and reduce the high runtime associated with MSA construc-
tion. In this paper, we introduce CARE 2.0—an extension of CARE. The new contribu-
tions are three-fold.

First, CARE 2.0 includes a dedicated code path for paired-end reads. Previously, all 
reads were treated as unpaired. Second, we incorporate machine learning techniques 
in the form of random forests into the correction algorithm to further increase both 
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precision and sensitivity. The random forests hereby replace our hand-crafted conditions 
to decide whether a specific position in a read should be modified. This is in contrast to 
previous recent machine learning approaches like Athena [18] and Lerna [19] which try 
to find optimal input parameters for existing correction algorithms. Third, the algorithm 
has been optimized to reduce both runtime and memory consumption on both CPUs 
and GPUs.

We confirm the benefits of the new approach using simulated as well as real-world 
Illumina data in down-stream analysis. Our experiments show that on average CARE 2.0 
reduces the number of FPs by a factor of 1.8 compared to CARE while achieving a simi-
lar number of TPs on simulated datasets thereby vastly outperforming other state-of-
the-art tools in terms of FP-rate such as Musket, SGA, Karect, Bcool, Lighter, and BFC. 
Additionally, the de-novo assembly quality as well as the k-mer spectra of corrected real-
world datasets are improved.

Implementation
Workflow

The algorithm of CARE 2.0 can be split into three separate phases: Construction, Correc-
tion, and Merge.

Construction phase

In the construction phase each sequencing read is inserted into multiple hash tables. 
For each read ri h hash values, which form a so-called read signature S, are computed 
where h denotes the number of hash tables and used hash functions. Each hash function 
is applied to every canonical k-mer of ri . The read signature then consists of the smallest 
observed hash value of each hash function. Finally, the key-value pair (S[l], i) is inserted 
into the l-th hash table.

Correction phase

Figure 1 illustrates the general workflow for correction of read ri in CARE 2.0. First, the 
read signature S is computed again which is then used to query the collection of hash 
tables. The result of this operation is a set of candidate reads C which can be used for 
correction of the anchor read ri.

Subsequently, each read in C is aligned to the anchor read. In general, this means com-
puting a semi-global alignment between anchor and candidate. Since we target Illumina 
reads the dominant type of sequencing errors are mismatches. Gaps within a sequence 
are thus not considered and only semi-global alignments without inner gaps are com-
puted. This is implemented as an efficient shifted hamming distance calculation using 
bit-wise operations [20].

Next, a filter is applied to the set of candidates to remove reads which do not provide 
sufficient information for the correction process. A perfect filter would only keep can-
didates which originate from the same genomic location as the anchor read. In CARE 
2.0, the filter inspects the alignments and discards candidates whose alignment contains 
many mismatches, or does not sufficiently overlap the anchor read. Specifically, the ratio 
between number of mismatches and overlap length is considered. If the ratio surpasses 
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a threshold the corresponding candidate is removed from the candidate set. Candidates 
which pass the filter are assumed to be similar to the anchor.

Let F(ri) denote the set of candidate reads which passed the filter. The next step is the 
construction of an MSA M containing all candidates in F(ri) together with anchor read 
ri . This is achieved using the previously calculated pair-wise alignments between anchor 
and candidates in a manner similar to the well known STAR approximation algorithm 
[21]. In the MSA, we store nucleotide counts and sum of nucleotide weights per col-
umn per possible nucleotide (A,C,G,T). Candidates with a better alignment have higher 
nucleotide weights. If sequence quality scores are used, better quality scores also lead to 
higher weights. The consensus of a column is defined as the nucleotide with the great-
est nucleotide weight. The support of a column is the relative weight of the consensus 
nucleotide.

After construction, M could already be used to apply corrections to anchor ri and 
achieve reasonably good results. However, this can be inaccurate for anchors that can 
be mapped to (inexact) repeat regions or anchors with multiple errors. Thus, we apply a 
second filter labeled MSA refinement, which attempts to remove candidates from both 
F(ri) and M which originate from a different genomic region. This is done by inspecting 
the columns of M to find candidates with different patterns than the anchor read. Let 
column e be a column which is covered by the anchor read. The column contents are 
inspected to find a nucleotide X which is different from the column consensus with a 
frequency exceeding a certain threshold (default: 0.3× estimateddatasetcoverage ). If X is 
equal to the corresponding base in the anchor read, candidates which do not contain X 
at their respective position in column e are removed from both M and F(ri) . Otherwise, 
candidates will be removed which match X at the corresponding position. This process 
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Fig. 1  Workflow of CARE 2.0: a The signature of an anchor read ( ri ) is determined by minhashing and used to 
query the precomputed hash tables. The retrieved reads form the candidate read set C(ri) . b All reads in C(ri) 
are aligned to ri . Reads with a relatively low semi-global pairwise alignment quality are removed, resulting 
in the filtered set of candidate reads ( F(ri) ). c The initial MSA is constructed around the center ri using F(ri) . 
The MSA is refined by removing candidate reads with a significantly different pattern from the anchor (i.e. 
r15, r22, r7 in the example). d The anchor read (the seventh nucleotide in ri in the example) and optionally 
some of the candidates are corrected (the fifth nucleotide in r2 in the example), using a provided random 
forest trained for correction
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of column inspection and removal is repeated at most five times. After each iteration, 
the MSA consensus is recalculated. MSA refinement will stop early as soon as no candi-
date is removed during an iteration.

The refined MSA will be used for error correction. Error correction is performed by 
changing nucleotides in the anchor to the corresponding column consensus of the MSA. 
We distinguish two cases for anchor correction based on the quality of the MSA. For 
high-quality MSAs, each position of the anchor is changed to the consensus uncondi-
tionally. On the other hand, only positions with high confidence in the MSA are changed 
in the case of a low-quality MSA. A position with high confidence has a support value 
greater than 0.90 in the corresponding column, and the nucleotide of the anchor for this 
column does appear at most twice in the column. To classify an MSA as either high-
quality or low-quality, column support and column coverage are aggregated to find the 
minimum column support, average column support, and minimum column coverage. 
Subsequently, thresholds are applied to the computed values to distinguish high-quality 
MSAs from low-quality MSAs.

High-quality MSAs do not only provide reliable information about columns which 
correspond to positions in the anchor but can also extend to the left and to the right of 
the anchor, respectively. The column coverage decreases towards the left end and right 
end. This also means that columns which are close to the anchor read may have decent 
coverage, and can be used to correct the candidates of the current anchor. Let [b, e) be 
the column interval which is covered by the anchor read. CARE 2.0 will produce a can-
didate correction if the candidate is fully contained in the column range [b− x, e + x) , 
where x = 15 is the default value. The same read can be corrected as a candidate in 
MSAs of different anchors.

Merge phase

After correction, all results are sorted and corrections are grouped by read in order to 
merge each read’s corrections into a final corrected read, which is subsequently writ-
ten to the result file. For each read, there exists an anchor correction and zero or more 
possible candidate corrections. If less than three candidate corrections are present, the 
anchor correction is treated as the final correction result. Otherwise, it is only used if it 
is equal to all of its candidate corrections. Otherwise, the original read remains unmodi-
fied, i.e. no correction is performed, and the original read is written to file.

Novel features of CARE 2.0

CARE 2.0 provides alternatives for two components of the workflow. First, the candidate 
filter is improved to be able to utilize the inherent information contained in paired-end 
reads. Second, a pre-trained Random Forest classifier can be utilized to determine which 
positions of a read should be modified during the correction step. Our results show that 
these two modifications are able to greatly reduce the number of false-positive correc-
tions while maintaining a high number of true positives. Additionally, using Random 
Forests to aid error correction can further increase true-positive corrections. It is pos-
sible to opt out of the CARE 2.0 alternatives, in which case the program behaves equiva-
lently to CARE 1.0, but with improved resource usage.
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Paired‑end filter

Paired-end sequencing technologies produce pairs of reads. The two reads in a read pair 
come from the same genomic region, and are usually separated by only a few hundred 
base pairs. For any given read in a read pair, we will refer to the second read of that pair 
as its mate.

In CARE 2.0, both reads of a pair can be processed simultaneously. After finding 
the two candidate sets and computing the respective pair-wise alignments with the 
two anchors, candidates will be filtered to remove candidates of different regions as 
explained above. Here, the pair information can play an important role. The two can-
didate sets are inspected to find candidates of the same read pair, where one of the 
reads is a candidate of one anchor, and the mate of that candidate is a candidate of the 
anchor’s mate. Such pairs of candidates are kept in the candidate sets unconditionally. 
We assume that this condition holds true only if the anchor read pair and the candi-
date read pair both originate from the same genomic region. The other candidates are 
filtered by the ratio between number of mismatches and size of overlap, which needs to 
be less than a threshold tpaired (default: 0.06). For example, assume candidates of both 
an anchor read a0 and its mate a1 should be filtered. Let the candidate sets of a0 and 
a1 be C(a0) = {r0, r5, r11} and C(a1) = {r4, r8, r14} , respectively. Two consecutive reads 
r2∗i, r2∗i+1, i ∈ N form a read pair. Then r4 and r5 always pass the filter, because they orig-
inate from the same read pair. The remaining candidates are kept depending on their 
alignment quality to the corresponding anchor read.

Random forest‑based correction

In general, Random Forests are an ensemble learning method [22] generating a collec-
tion of decision trees based on the available training data by separating instances from 
two predefined and known classes (positive and negative class) according to a number of 
features describing each instance. During the prediction process, i.e. classification of an 
instance of unknown class, each individual decision tree is applied to the instance’s fea-
tures, yielding a probability for each class. The instance is then classified according to its 
average class probabilities over the set of decision trees. A final class label is assigned by 
comparing the instance’s positive class probability to a predefined threshold.

CARE 2.0 offers a Random Forest-based correction mode which differs in its approach 
to low-quality MSAs by utilizing a set of two distinct Random Forest classifiers to iden-
tify nucleotides to be corrected. As in the default mode, nucleotides of anchors of high-
quality MSAs are replaced with the alignment consensus unconditionally, whereas for 
low-quality MSAs, we extract for each considered nucleotide position a variety of fea-
tures from its MSA. Utilizing a Random Forest classifier, trained on simulated sequenc-
ing reads of a variety of genomes, we determine a confidence value for the correction 
of each nucleotide of the read based on its extracted features. Nucleotides whose cor-
rection confidence surpasses a user-defined correction threshold are replaced with the 
position’s MSA consensus. The choice of the threshold is a trade-off between sensitivity 
and precision. Lower thresholds will increase the number of corrected errors at the cost 
of an increase in false positives. Extracted features include both local features, limited to 
the MSA column of the considered read position, and global features, which take into 



Page 7 of 17Kallenborn et al. BMC Bioinformatics          (2022) 23:227 	

account information from all columns of the read’s MSA. Local features include the rela-
tive frequencies of the original and consensus nucleotides, their respective sequencing 
qualities and the local coverage, while global features include arithmetic transformations 
of coverage and consensus frequency values over the length of the MSA. Figure 2 shows 
an example MSA with a selection of corresponding features. A separate Random Forest 
classifier and feature extraction are utilized in the case of candidate corrections, in which 
additional features such as the overlap of candidate and anchor are taken into account.

Performance improvements and additional features

CARE 2.0 includes a number of performance optimizations which improve both runt-
ime and memory usage.

•	 CARE 1.0 requires an initial scan of the input file to find the number of reads and 
maximum read length to calculate the required size of a contiguous memory location 
large enough to store the reads. Reads are then stored to this memory in a second 
pass. In CARE 2.0, reads are loaded in chunks in a single pass, and are subsequently 
rearranged in memory.

•	 The memory footprint of hash tables has been reduced. This allows for using more 
hash tables to improve correction quality when available RAM is a limiting factor.

•	 Construction of the output file is faster. If possible, the GPU is used to sort the results 
to group results belonging to the same input read. The number of accesses to the 
hard-drive has been decreased in the case when correction results have been spilled 
to hard-drive because no more system memory was available. Finally, multiple cpu 
threads are used to overlap reading the input file, combining the original read with its 
correction result, and writing the output file.

Fig. 2  Example features for the dashed column in the MSA constructed for the anchor. The random forest 
will use the features to decide if anchor nucleotide T is changed into consensus nucleotide A. Quality scores / 
weights are not displayed for brevity
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•	 The usage of read quality scores usually improves correction quality. However, stand-
ard quality scores in 8-bit ASCII format require four times more memory compared 
to 2-bit encoded DNA sequences. CARE 2.0 offers an optional lossy binned repre-
sentation of quality scores using only one bit or two bits per character, respectively. 
This allows for a more fine-grained trade-off between correction quality and memory 
usage.

Program information

CARE 2.0 is written in C++17 and targets Linux workstations. It uses multi-threading 
to achieve parallelism on suitable hardware. CARE 2.0 comes in two versions, a CPU 
version, and a GPU version. The latter requires a system with one or more Nvidia GPUs 
compatible with CUDA 11. The GPU version allows for additional parallelism of the 
algorithm by moving the majority of computations to the GPU. CARE 2.0 provides addi-
tional python scripts to train other forests. Detailed instructions are included in the soft-
ware repository.

Results
CARE 2.0 has been evaluated on both simulated and real-world Illumina data. Table 1 
lists the different datasets. Real-world datasets are publicly available. Simulated datasets 
have been generated using the ART read simulator with its built-in HiSeq 2000 profile. 
This produces reads with an error-rate of approximately one percent. Its error model 
is explained in [23]. The utilized program arguments for ART are available in the sup-
plement. The correction quality is evaluated in terms of three categories. For simulated 
datasets, error-free versions of the datasets are also available from ART. Those are used 
to determine per-base counts of true-positive corrections (TP), false-positive correc-
tions (FP), and related metrics.

Let u, e, c be the nucleotide in the same read at the same position in the uncorrected 
file, error-free file, and corrected file, respectively. It is a true positive correction if 
u  = e ∧ e = c . False positives are defined as u = e ∧ e �= c.

The evaluation of real-world datasets is performed by comparing genome assem-
blies computed from uncorrected and corrected datasets. Assembly is performed with 
SPAdes v3.13.1 [24]. The assembly metrics which are used for comparison are obtained 
using QUAST v5.0.2 [25]. As a second type of real-world evaluation, k-mer spectra of 

Table 1  List of simulated datasets (S1–S4) and real-world datasets (R1–R3)

Simulated reads have length 100. Real reads have length 101. Accession numbers for R1 and R2 are SRR543736, and 
SRR988075, respectively. R3 is taken from GAGE Genome Assembly Gold-standard Evaluations

Name Organism Coverage Reads

S1 C.elegans 30x 30.1M

S2 D.melanogaster 30x 36.0M

S3 Hum. Chr. 14 30x 26.5M

S4 Human 30x 914.7M

R1 C.elegans 58x 57.7M

R2 D.melanogaster 64x 75.9M

R3 Hum. Chr. 14 35x 36.5M



Page 9 of 17Kallenborn et al. BMC Bioinformatics          (2022) 23:227 	

corrected datasets are compared. Jellyfish v2.3.0 [26] is used to count low-coverage lost 
true k-mers, i.e. k-mers which are present in both the dataset and the corresponding ref-
erence genome, and which are missing in the corrected dataset. The results of CARE 2.0 
are compared to other state-of-the-art error correction tools Musket v1.1, SGA v0.10.15, 
Karect (Github commit from 16th March 2015), Bcool (Github commit from 29th 
November 2018), Lighter v1.1.2, and BFC r181, as well as CARE 1.0 to confirm algorith-
mic improvements.

CARE 2.0 has the ability to use paired-end information of reads, and can perform 
error correction using a random forest. Unless stated otherwise, the benchmarks were 
conducted using the following program settings for CARE 1.0 and CARE 2.0. The k-mer 
size is set to 20. 48 hash tables are used. Standard 8-bit quality scores and candidate cor-
rection are enabled. Additionally, CARE 2.0 uses both the random forest for anchor cor-
rection and candidate correction, and the paired-end mode, using tpaired = 0.06 (default) 
for paired-end filtering. Tools other than CARE and CARE 2.0 are run with default set-
tings. The exact program arguments for each tool are listed in the supplement.

Training of random forests

We generated multiple simulated read datasets (each with read length 100 and 30x cov-
erage) for the following reference genomes: C.elegans, D.melanogaster, Human Chr.14, 
Human Chr.15, Mus musculus Chr. 15, and A.thaliana. These datasets were used to train 
multiple Random Forest classifiers, consisting of 128 decision trees each, following a 
genome-wise leave-one-out approach, i.e. training only on data from at most 5 out of 
6 reference genomes. The following evaluations were then performed using only those 
classifiers not trained on the genomes corresponding to the respective corrected data-
sets. That is, training data of C.elegans is not included in the forest to correct S1 and 
R1. D.melanogaster is excluded for correction of S2 and R2. Finally, the forest which 
was used to correct S3, S4, and R3, was not trained using reads from Human Chr.14 or 
Human Chr.15. All classifiers were trained using the scikit-learn toolkit [27] for Python 3 
using the library’s default hyperparameters and converted to our own binary data format 
for use with CARE 2.0.

Simulated data

Each simulated dataset has been corrected by each tool. We performed a three-way 
comparison between original datasets, error-free datasets, and corrected datasets to 
obtain the number of TP and FP, as well as the number of false-positive corrections in 
one million corrections, i.e 106 ∗ FP/(FP + TP) . Figure 3 shows a comparison between 
CARE 1.0 and CARE 2.0 to highlight the impact of the choice of threshold tpaired on TPs 
and FPs. With the default value of 0.06, CARE 2.0 with random forest is able to reduce 
the number of false positives by a factor of 2 (ratio 0.5), and to slightly increase the num-
ber of true corrections.

Figure 4 shows the average numbers of TP and FP over all four datasets, normalized 
to CARE 2.0. For dataset S4, CARE 1.0 used 20 hash tables and excluded quality scores. 
CARE 2.0 used 2-bit quality scores. These changes were necessary to reduce memory 
consumption. In terms of TP, all tools perform well without much of a difference. BFC 
achieves the greatest number of true-positive corrections, which is around two percent 
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greater than the TPs of SGA and CARE 2.0. In contrast, the number of false-positive 
corrections varies significantly per tool. One can see that CARE 2.0 achieves over an 
order-of-magnitude smaller number of FPs which makes it superior to the other tools. 
Compared to CARE 1.0, the average number of FPs, (

∑4
i=1 FPSi)/4 , could be improved 

by a factor of 1.22 by using paired-end mode and a random forest. The average FP 
improvement factor is 1.87 ( = (

∑4
i=1 CARE1-FPSi/CARE2-FPSi)/4 ). Detailed numbers 

of TPs and FPs for each tool and dataset are available in the supplement.

Real‑world data

De‑novo assembly

Assembly reports for corrected and uncorrected datasets are shown in Table 2 in terms 
of N50 and NGA50. CARE 2.0 is able to further improve the results of CARE 1.0 for 

Fig. 3  Comparison of CARE 2.0 paired-end mode to CARE 1.0, i.e single-end classic mode, on dataset S3. 
Results are normalized to CARE 1.0. For TP ratio greater numbers are better. For FP rate ratio, smaller numbers 
are better. FP rate is the rate of false-positive corrections in one million corrections

Table 2  A selection of assembly metrics for the real datasets

Bold indicates the best values per column

NG50 NGA50

R1 R2 R3 R1 R2 R3

Uncorrected 8518 43,568 5506 6325 35,938 5439

CARE 1.0 8568 44,397 10,046 6333 36,609 9278

CARE 2.0 pe 8537 44,165 10,251 6310 36,459 9604

CARE 2.0 pe forest 8575 45,807 10,624 6350 37,649 10,014
Musket 6635 33,375 9886 4831 28,470 9083

SGA 8513 42,350 9806 6322 35,140 9099

Karect 8220 34,203 10,263 6077 29,503 9633

Bcool 8189 50,280 7727 5962 40,116 7032

Lighter 8108 33,301 10,162 5988 28,015 9300

BFC 8497 42,281 10,470 6284 34,782 9779
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each dataset. In addition, it produces the best assembly results on datasets R1 and R3, 
and the second best result on dataset R2. The full QUAST reports for each dataset can 
be found in the supplement.

k‑mer statistics

To quantify false-positive corrections on real-world datasets where the location of errors 
is generally unknown, k-mer spectra have been inspected for uncorrected reads, cor-
rected reads, and the corresponding reference genome. A k-mer is called true k-mer if it 
occurs in the reference genome. During error correction true k-mers which are present 
in the uncorrected reads should not be altered to keep the correct genome information. 
k-mers which are present in both the uncorrected reads and the genome, but are missing 
from the corrected reads are called lost true k-mers. A perfect error correction algo-
rithm should not introduce lost true k-mers. Figure 5 displays the number of lost true 
distinct 21-mers of dataset R2 for different error correction tools. Low-coverage k-mers 
can be easily lost during error correction because there is not much supporting infor-
mation. For example, a k-mer could be changed into a more frequent one. With its high 
precision corrections CARE 2.0 is able to keep the greatest number of low-coverage true 
21-mers. The total number of low-coverage lost 21-mers in dataset R2 is presented in 
Fig. 6. Figure 7 shows a comparison between results of CARE 2.0 and CARE 1.0. CARE 
2.0 significantly reduces the number of lost 21-mers with a coverage of 5–10. The exact 
numbers of lost true 21-mers for each tool and dataset are available in the supplement.

Runtime and memory consumption

Benchmarks have been performed on a Linux workstation with an AMD Ryzen Thread-
ripper 3990X 64-core processor and 256 GB system memory. Additionally, the worksta-
tion comprises of a NVIDIA Geforce RTX 3090 GPU with 24 GB memory which will be 
used for the GPU-implementation of CARE. Runtime and memory consumption have 

Fig. 4  Average improvement factors of CARE 2.0. For true-positive corrections (TP) greater numbers are 
better. For false-positive corrections (FP) and false-positive rate per million corrections (FP-rate) smaller 
numbers are better
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Fig. 5  Number of low-coverage 21-mers of dataset R2 which have been falsely removed from the k-mer 
spectrum during error correction. Smaller numbers are better

Fig. 6  Total number of low-coverage 21-mers (coverage 1–10) of dataset R2 which have been falsely 
removed from the k-mer spectrum during error correction. Smaller numbers are better

Fig. 7  Improvement of CARE 2.0 over CARE 1.0 in terms of lost 21-mers
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been measured using the unix command /usr/bin/time -v. Results for simulated 
human dataset S4 are shown in Table  3. Benchmarks of CARE, except for CARE 2.0 
PE Forest* have been performed using 20 hash tables and with quality scores disabled. 
CARE 2.0 PE Forest* instead shows the time using 48 hash tables, with enabled quality 
scores. To reduce memory consumption, a lossy 2-bit compression of quality scores has 
been used. The GPU programs have been run with a reduced number of threads because 
only a limited number of threads can be reasonably utilized. 128 threads (64 + hyper-
threading) have been used for Karect instead of 64 to further reduce the runtime, which 
was known by previous benchmarks to be significantly greater than the time of other 
tools.

First, we compare different runs of CARE. CARE 2.0 introduces a number of optimi-
zations which reduce the runtime by up to a factor of 2. The paired-end mode does not 
introduce significant algorithmic complexity which results in a runtime similar to the 
single-end mode. Error correction using a random forest has a negative impact on per-
formance. The main contributor to the runtime is the high number of random memory 
accesses when traversing the trees. CARE 2.0 PE Forest* uses more hash tables and (com-
pressed) quality scores. The quality scores do not fit into GPU memory and thus need to 
be accessed from CPU memory via slow PCI-e interconnect. Compared to other error 
correctors, CARE 2.0 in general is able to match the performance of the k-mer based 
tools Lighter and BFC. Using the best corrections settings, which increase the runtime, 
CARE 2.0 can still be considered one of the faster tools.

In terms of reported memory usage, CARE has the highest memory consumption. 
However, in general the measured memory is not strictly required. At its core, CARE 
needs the reads and the hash tables to be located directly in memory. The remaining free 
memory, if any, is then utilized to store temporary results. On systems with less mem-
ory this leads to results being stored on disk instead at a cost of performance. A similar 

Table 3  Resource usage of error correction tools for the correction of Human dataset S4

The runtime is given in minutes. Memory consumption is given in GB

Name #threads Runtime Memory

CARE 1.0 (CPU) 64 157 241

CARE 1.0 (GPU) 16 84 238

CARE 2.0 SE (CPU) 64 95 234

CARE 2.0 SE (GPU) 16 42 220

CARE 2.0 PE (CPU) 64 98 235

CARE 2.0 PE (GPU) 16 43 220

CARE 2.0 PE Forest (CPU) 64 120 234

CARE 2.0 PE Forest (GPU) 16 60 221

CARE 2.0 PE Forest* (CPU) 64 265 245

CARE 2.0 PE Forest* (GPU) 16 180 245

Musket 64 249 138

SGA 64 334 37

Karect 128 6209 240

Bcool 64 346 43

Lighter 64 39 16

BFC 64 85 108
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principle applies to GPU memory. GPU versions of CARE occupy close to the maximum 
of available GPU memory, which is 24 GB. They attempt to cache as much read data as 
possible on the GPU for fast access. The remaining read data has to be fetched from sys-
tem memory.

Discussion
The ultimate goal of read error correction is to produce a dataset of error-free reads 
given a dataset of possibly erroneous reads. This is achieved by finding and removing 
all existing errors, without introducing new errors. To date, no such perfect algorithm 
exists. However, current state-of-the-art algorithms for Illumina datasets are able to cor-
rect the vast majority of substitution errors, at the expense of relatively few false-positive 
corrections. In our evaluation on simulated datasets, excluding S4, we observed that 
around 98% of all errors could be corrected while around 0.5% of performed corrections 
are wrong. The exact numbers are tool-dependent and dataset-dependent and can be 
found in the supplement. The issue with error correction algorithms lies in the absolute 
number of false-positives. Absolute numbers can still reach hundreds of thousands on 
medium-sized datasets, and tens of millions on large datasets. Thus, even with a great 
amount of errors corrected, erroneous reads resulting from false-positive corrections 
can still affect analysis in a negative way. With CARE 2.0, we are able to further reduce 
the absolute FP numbers. At the same time, our correct modifications of reads are on 
par with those of other programs.

Simulated datasets are a simple way to assess the potential of an error corrector. 
However, good results on simulated data may not necessarily translate to good results 
on real-world datasets since error models of simulators could be different compared to 
that of sequencing machines. We have verified that good results of CARE 2.0 can be 
observed for both simulated datasets and real-world datasets. Evaluation with real reads 
can be challenging because usually corresponding error-free reads are not available to 
count corrected errors. Instead, we have used publicly available reference genomes to 
evaluate the impact of real-world error correction on the k-mer spectra as well as on 
de-novo assembly. The quality of both the resulting k-mer spectrum and the assembled 
contigs is susceptible to sequencing errors.

The impact of wrong corrections on the k-mers is two-fold. On one hand, a valid k-
mer could be changed into a one which does not appear in the reference genome. On the 
other hand, k-mers of reads spanning low-coverage regions could be altered into more 
frequent ones. While this does not introduce wrong information to the spectrum, cor-
rect information is removed instead. With its low number of false-positive corrections 
the algorithm of CARE 2.0 removes the fewest correct 21-mers from the dataset com-
pared to other tools.

Similar arguments can be made for de-novo assembly. When a k-mer is falsely changed 
into a different existing k-mer the corresponding genome locations, which could have 
a large distance in the genome, may appear to be in close proximity because they are 
connected through this k-mer. Losing k-mers in low-coverage regions through wrong 
corrections can prevent the assembly of this region altogether because it may not be 
possible to find overlapping k-mers between reads of that region. These observations 
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also apply to false-negative corrections, i.e. errors which remain undetected or uncor-
rected. Thus, both a high number of TP, and small number of FP are desired.

Our presented evaluation of CARE 2.0 using real-world datasets focuses on k-mer 
analysis and de-novo genome assembly. Previous work has also investigated the impact 
of error correction on other types of downstream analysis, such as variant calling [2]. 
The results indicate that error correction can increase the number of correctly called 
SNPs and decrease the number of false positive calls. We thus plan to investigate the 
applicability of CARE 2.0 in different downstream analysis pipelines as part of our future 
work.

Conclusions
NGS datasets are affected by errors. While there exists a variety of tools which tackle 
the problem of error correction in preparation of downstream analysis, its results can 
be negatively impacted by the presence of false-positive corrections. We have revised 
the algorithm of CARE, an MSA-based tool for error correction of Illumina datasets, 
and extended it to utilize random forests to make decisions regarding the correction of 
individual nucleotides. These changes combined have resulted in increased sensitivity, 
specificity, as well as program efficiency.

In the future, further research can be conducted in two areas. On one hand, we may 
try to adapt our algorithm to target other sequencing technologies such as Oxford 
Nanopore or PacBio which are long-read platforms. This will introduce new challenges 
due to significantly longer reads, different types of sequencing errors like insertions and 
deletions, and higher error-rates. For instance, the current alignment computation via 
shifted hamming distance will no longer be viable. It would need to be replaced by an 
actual semi-global alignment. On the other hand, we have shown that the use of a ran-
dom forest improves correction quality. Other machine learning techniques may also 
prove beneficial. For example, our MSAs could be interpreted as a multi-channel image 
which can be passed to a deep neural network for the detection of sequencing errors. 
Our hand-selected features which are currently used for the random forest may not be 
optimal whereas a neural network could learn different, better features from the MSAs.
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