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Abstract 

Background:  Recent research recommends that epi-transcriptome regulation 
through post-transcriptional RNA modifications is essential for all sorts of RNA. Exact 
identification of RNA modification is vital for understanding their purposes and regula-
tory mechanisms. However, traditional experimental methods of identifying RNA 
modification sites are relatively complicated, time-consuming, and laborious.

Machine learning approaches have been applied in the procedures of RNA sequence 
features extraction and classification in a computational way, which may supplement 
experimental approaches more efficiently. Recently, convolutional neural network 
(CNN) and long short-term memory (LSTM) have been demonstrated achievements in 
modification site prediction on account of their powerful functions in representation 
learning. However, CNN can learn the local response from the spatial data but cannot 
learn sequential correlations. And LSTM is specialized for sequential modeling and can 
access both the contextual representation but lacks spatial data extraction compared 
with CNN. There is strong motivation to construct a prediction framework using natural 
language processing (NLP), deep learning (DL) for these reasons.

Results:  This study presents an ensemble multiscale deep learning predictor (EMDLP) 
to identify RNA methylation sites in an NLP and DL way. It organically combines the 
dilated convolution and Bidirectional LSTM (BiLSTM), which helps to take better advan-
tage of the local and global information for site prediction.

The first step of EMDLP is to represent the RNA sequences in an NLP way. Thus, three 
encodings, e.g., RNA word embedding, One-hot encoding, and RGloVe, which is an 
improved learning method of word vector representation based on GloVe, are adopted 
to decipher sites from the viewpoints of the local and global information. Then, a 
dilated convolutional Bidirectional LSTM network (DCB) model is constructed with the 
dilated convolutional neural network (DCNN) followed by BiLSTM to extract poten-
tial contributing features for methylation site prediction. Finally, these three encod-
ing methods are integrated by a soft vote to obtain better predictive performance. 
Experiment results on m1A and m6A reveal that the area under the receiver operating 
characteristic(AUROC) of EMDLP obtains respectively 95.56%, 85.24%, and outperforms 
the state-of-the-art models. To maximize user convenience, a user-friendly webserver 
for EMDLP was publicly available at http://​www.​labiip.​net/​EMDLP/​index.​php (http://​47.​
104.​130.​81/​EMDLP/​index.​php).

Conclusions:  We developed a predictor for m1A and m6A methylation sites.
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Background
RNA molecules’ functional diversity is enriched by post-transcriptional RNA modi-
fications, which regulate all stages of RNA life [1]. Up to now, there are around 
160 different forms of RNA modifications that have been discovered [2], includ-
ing N1-methyladenosine(m1A), N6-methyladenosine(m6A), 5-methylcytosine(m5C), 
N2-methylguanosine(m2G), 7-methylguanosine(m7G) [3, 4], etc. Among them, m1A 
modification is a prevalent RNA modification, which occurs on the nitrogen-1 position 
of the adenine base attached with a methyl group [5], as shown in Fig.  1a. It’s linked 
to problems with the respiratory chain, neurodevelopmental regression, and mediate 
antibiotic resistance bacteria, etc. [6–8]. Another modification affecting adenine is m6A 
modification, the most abundant modification in mammals, which occurs on the nitro-
gen-6 position of the adenosine base [9], as shown in Fig. 1b. It has a profound impact 
on human growth and disease [10]. The adenosine usually undergoes m1A and m6A [11]. 
Interestingly, m1A is also known to undergo Dimroth rearrangement to m6A under alka-
line conditions [11]. Therefore, it is important to accurately identify m1A and m6A modi-
fication sites to uncover the mechanisms and functions of those modifications [12].

Many experimental methods for identifying m1A and m6A modification sites have 
been constructed with the significant advances in high-throughput sequencing tech-
nology, such as m6A-CLIP [13], m6A-miCLIP [14], m1A-seq [15], m1A-ID-seq [11], etc. 
However, the experimental methods are expensive and time-consuming, which limit 
their extensive use [16]. Fortunately, various computational methods have become pow-
erful supplements in this area.

Most machine learning methods designed for site prediction from sequences usu-
ally first extracted features based on human-understood feature methods, followed by 
a classifier to predict whether the site is a methylation site or not. For example, RAM-
Pred extracted features based on nucleotide chemical properties (NCP), nucleotide 
composition (NC), and adopted the support vector machine (SVM) to predict the m1A 
methylation site for the first time [17]. iRNA-3typeA extracted features based on NCP, 
accumulated nucleotide frequency(ANF), and adopted SVM to predict m1A, m6A, and 
A-to-I modification sites [18]. iMRM extracted features based on NCP, NC, One-hot 
encoding, Dinucleotide Binary Encoding (DBE), Nucleotide Density (ND), Dinucleotide 
physicochemical properties (DPCP) and adopted eXtreme Gradient Boosting(XGboost) 
to predict m1A, m6A, m5C, ψ and A-to-I modification sites, whose performance was 

Fig. 1  Chemical structures of modifications. a m1A modification. b m6A modification
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superior to existing methods [19]. M6AMRFS extracted features based on DBE, ANF, 
used the F-score algorithm combined with Sequential Forward Search(SFS) to raise 
feature representation, and employed XGBoost to predict m6A site [20]. RNAMeth-
Pre extracted the features of the flanking sequences, the local secondary structure data, 
and the relative position data first, then adopted SVM to predict m6A methylation site 
with satisfactory performance [21]. SRAMP combines three random forest classifiers by 
exploiting One-hot encoding, K-nearest neighbor encoding, and Nucleotide pair spec-
trum encoding to predict m6A sites [22]. RFAthM6A extracted features based on four 
encoding methods, including Knucleotide frequencies (KNF), position-specific nucleo-
tide sequence profile (PSNSP), Kspaced nucleotide pair frequencies (KSNPF), and posi-
tion-specific dinucleotide sequence profile (PSDSP), respectively, then built four random 
forest models, which were competitive compared with AthMethPre, M6ATH, and RAM-
NPPS [23]. WHISTLE adds 35 genomic features in addition to integrating conventional 
sequence features and predicts m6A methylation by SVM [24], which significantly 
improved compared to other computational approaches. However, genomic features are 
not always available when only a few RNA sequences are provided to predict m6A meth-
ylation. These conclusions show that extracted features is extremely critical to the final 
prediction.

It is well known that RNA-seq contains rich biometric information. Thus, the Rational 
representation of RNA sequences becomes even more critical. To address this problem, 
representation learning of sequences by natural language processing (NLP) has attracted 
a lot of attention [25], where an RNA sequence is regarded as a sentence, and a k-mon-
omeric unit (k-mer) is regarded as a word, has gained great traction [26, 27]. Compared 
with conventional machine learning methods, most of the deep learning(DL) models 
can be divided into three parts: first, learning input data representations by NLP models 
[28]; second, composing over the word vectors that have been learned [29]; third, class-
ing by a classifier to predict whether or not the site is a methylation site.

By far, some prediction methods using NLP and DL networks have been developed 
to predict m6A or m1A sites. Among them, Gene2Vec [30], DeepPromise [12], and 
EDLm6Apred [16] were the most representative and advanced methods for methyla-
tion site prediction. Specifically, Gene2Vec was developed to predict m6A site based on 
Word2vec [31] and convolutional neural network (CNN). DeepPromise adopted CNN 
and integrated enhanced nucleic acid content (ENAC) [32], RNA word embedding [33], 
and One-hot encoding [20, 34] features to identify m1A and m6A sites. EDLm6Apred 
adopted Word2vec, One-hot encoding, RNA word embedding, and BiLSTM to predict 
m6A sites. However, the existing methods have the following shortcomings. As is known, 
from the perspective of NLP, ENAC, One-hot, and RNA word embedding focused on 
the local semantic information [16] but ignored the context and global information. 
Word2vec encoding considered the context window information, ignoring the global 
information [35]. From the perspective of DL, CNN can learn the local response from 
the spatial data [25]. The different scale of the convolution kernel impacts the network’s 
learning ability. Gene2Vec [30] and DeepPromise [12] directly used CNN composed of a 
single-scale convolution kernel, which might lead to incomplete representation learning 
of sequences [36]. The missing information in both methods may be important to the 
final site prediction. In addition, CNN has no memory function and lacks the ability to 
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learn sequential correlations [25]. On the contrary, EDLm6Apred [16] presented a deep 
BiLSTM network to address the above issue, which simultaneously accessed context 
information. However, BiLSTM lacks spatial data extraction compared with CNN and 
needs a high training time [37, 38].

Consider the above questions. This paper proposes EMDLP to identify RNA methyla-
tion sites in an NLP and DL way. Specifically, One-hot encoding, RNA word embedding, 
and RGloVe were initially used to encode the sequences. Secondly, the DCB model was 
constructed with DCNN followed by BiLSTM to extract potential contributing features 
for methylation site prediction. Third, Three predictors were constructed based on the 
DCB model by the three feature encoding methods above. Finally, EMDLP was formu-
lated by a soft vote with average predicted probabilities to use the three predictors to 
obtain better predictive performance. The results showed that the performance of the 
EMDLP model outperformed the state-of-the-art methods such as DeepPromise [12] 
and EDLm6Apred [16] in independent tests.

Results
Evaluation metrics

To estimate the prediction of the models, we adopted widely used binary classifier 
evaluation metrics, including Sensitivity(Sn, Recall), Specificity(Sp), Accuracy(Acc), 
Precision(Pre), F1 score (F1), Matthews correlation coefficient(MCC), Area under the 
receiver operating characteristic(AUROC), and Area under the precision-recall curve 
(AUPRC). Sn, Sp, Acc, Pre, F1, MCC are defined as follows:

where TP refers to true positive, TN refers to true negative, FP refers to false positive, 
and FN refers to false negative. In addition, the AUROC and AUPRC values are calcu-
lated based on the receiver operation curve (ROC) and the precision-recall curve (PRC), 
respectively. All the metric values range from 0 to 1 except for the MCC value, which 
ranges lies in [− 1, + 1], with a higher value indicating better performance.

(1)Sn =
TP

TP + FN

(2)Sp =
TN

TN + FP

(3)Acc =
TP + TN

TP + TN + FP + FN

(4)Pre =
TP

TP + FP

(5)F1 = 2×
Precision× Recall

Precision+ Recall

(6)MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )
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Results analysis

This paper first examined the performance of RGloVe and GloVe on different sliding 
window sizes. Second, the self-built DCB model was compared and analyzed with the 
CNN, DCNN, and BiLSTM models. Third, this study compared the RGloVe feature 
encoding with the three others on predicting methylation modification sites. Last, 
this paper compared the EMDLP model with state-of-the-art methods based on the 
independent datasets. Our computing device has two NVIDIA RTX2080Ti GPU and 
11 GB of GPU device memory. In addition to the GPU, the machine has two 2.3 GHz 
16-core Intel(R) Xeon(R) Gold 5218 CPU and 128 GB of RAM. The device is installed 
with 64-bit Windows10 Professional Edition 20H2, python 3.7.6, Keras 2.2.4, and 
TensorFlow-gpu 1.14.0.

The size of the sliding window is an important parameter that affects the perfor-
mance of the encoding scheme. Based on benchmark datasets, this experiment com-
pares the performance of RGloVe and GloVe in predicting m1A and m6A methylation 
sites under four different sliding window sizes(i.e., 8, 15, 30, and 60). RGloVe is based 
on the GloVe model framework and adopts RMSProp instead of Adagrad to minimize 
the loss function of the global vector model. As a result, RGloVe shows the best pre-
diction performance when the sliding window length = 30, as shown in Table 1. The 
experiment results show that using RMSProp can train the model more effectively.

Comparison with other different learning models

Next, DCB was compared and analyzed with CNN, DCNN, and BiLSTM using the 
same benchmark datasets. The experiments used RGloVe encoding to describe the 
RNA sequence, constructed CNNRGloVe, DCNNRGloVe, BiLSTMRGloVe, and DCBRGloVe, 
respectively. Among them, CNNRGloVe employed the CNN model in Deeppromise 
[12]. DCBRGloVe represented a self-built DCB model, including the DCNN and BiL-
STM stage. The DCNNRGloVed denoted the DCBRGloVe removing the BiLSTM stage, 
which was substituted by the flatten layer. Similarly, the BiLSTMRGloVe represented the 
DCBRGloVe without the DCNN stage.

The fivefold cross-validation evaluation results, the AUROC and AUPRC curves on 
the m1A and m6A are shown in Fig. 2 and Table 2. The result shows the AUROC of 
DCNNRGloVe is 0.57% and 0.74% higher than CNNRGloVe’s on m1A and m6A, and the 
AUPRC of DCNNRGloVe is 0.08% and 0.94% higher than CNNRGloVe’s. This result.

Table 1  AUROC scores of RGloVe and GloVe under different sliding windows sizes based on 
benchmark datasets

The bolded values represent the best results

Modification 
type

Encoding Window sizes = 8 Window 
sizes = 15

Window sizes = 30 Window 
sizes = 60

m1A RGloVe 0.9283 0.9317 0.9377 0.9315

GloVe 0.9282 0.9193 0.9305 0.9185

m6A RGloVe 0.8414 0.8415 0.8432 0.8407

GloVe 0.8399 0.8420 0.8414 0.8372
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Verifies that the single-scale convolution kernel in CNN is challenging to learn deep 
semantics from RNA sequences. On the contrary, the multiscale convolution kernels can 
extract additional features to provide deep semantics.

In addition, the study compared the performance of DCBRGloVe and DCNNRGloVe. The 
AUROC of DCBRGloVe is 0.72% and 0.77% higher than DCNNRGloVe’s on m1A and m6A, 
respectively, and the AUPRC of DCBRGloVe is 2.01% and 0.96% higher than DCNNRGloVe’s 
on m1A and m6A, respectively. The reason may be that DCNN has no memory function 
and cannot learn sequential correlations. On the contrary, DCB can capture the local 
correlation of different spatial structures according to DCNN and effectively learn the 
context of each k-mer in the text according to BiLSTM. In summary, DCB can under-
stand sequence semantics more accurately than other methods.

Finally, the study compared the running time of DCBRGloVe and BiLSTMRGloVe. 
Although many factors affect the model’s training time, the experiment results show that 
the training time of BiLSTMRGloVe is very long, for it is several times that of DCBRGloVe. 
The reason is that the max-pooling layer of the DCNN stage reduces the parameters of 

Fig. 2  Performance of the different models through fivefold cross-validation. The models are CNNRGloVe, 
DCNNRGloVe, BiLSTMRGloVe, and DCBRGloVe, respectively. "CNNRGloVe" employs the CNN model in Deeppromise; 
"DCBRGloVe" represents a self-built DCB model, including the DCNN and the BiLSTM stage; "DCNNRGloVe" 
denotes the DCBRGloVe removing the BiLSTM stage; "BiLSTMRGloVe" represents the DCBRGloVe without the DCNN 
stage
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the network, which plays an active role in lowering dimensionality and computational 
complexity.

In conclusion, the DCBRGloVe classifier could effectively and quickly capture the 
sequence details on m1A and m6A modification sites.

Comparison with other different feature encoding methods

Besides, the following content compared the prediction performance of the four fea-
ture encoding methods. The experiment encoded the sequences by our RGloVe and the 
three commonly used schemes, RNA word embedding, One-hot encoding, and word-
2vec, respectively, then applied the same DCB model to predict the modification site 
on the same independent dataset. The comparison results demonstrate that RGloVe 
outperforms the other three encoding techniques in predicting AUROC, as shown in 
Fig. 3 and Table 3. In the sense of exactly, for m1A and m6A sites, DCBRGloVe achieved 
AUROC 0.9468 and 0.8486 and more accurately than other methods. The reason is that 
the One-hot encoding and RNA word embedding emphasize local semantic informa-
tion, and Word2vec encoding highlights the context windows information, but the above 
three encodings ignore the global information. RGloVe inherits the advantages of GloVe, 

Fig. 3  Performance of the DCB model based on One-hot encoding, RNA word embedding, Word2vec, and 
RGloVe
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which combines the benefits of global matrix factorization and local context approaches 
[37]. Therefore, RGloVe can improve the model prediction accuracy according to this 
advantage.

In summary, RGloVe shows higher semantic accuracy than the other three commonly 
used schemes.

Comparison with state‑of‑the‑art approaches

Finally, EMDLP was compared with other state-of-the-art approaches on the same 
independent datasets, such as DeepPromise [12] and EDLm6Apred [16]. To make the 
comparison more illustrative, we built DCBDeepPromise by replacing the CNN model in 
DeepPromise with DCB, and our EMDLP replaced the ENAC encoding in DCBDeepPromise 
with RGloVe.

In order to evaluate the reliability of the model, the EDLm6Apred, DeepPromise, DCB-
DeepPromise, and EMDLP models were performed 100 replicate experiments on the 
same independent test sets of m1A and m6A, respectively. In each replicate, new evalu-
ation results were produced. As shown in Fig. 4, Table 4, and Fig. 5, the AUROC and 
AUPRC of EMDLP are better than other approaches. The reason may be that ENAC, 
One-hot, and RNA word embeddings focus on local semantic information, and Word-
2vec encoding considers context window information, but none of them pay attention 
to global statistical information. At the same time, RGloVe can represent semantic infor-
mation sequences more comprehensively than the other four encodings. And DCB is 
more suitable for extracting the RNA sequence’s features than the other methods. Fur-
thermore, We test the statistical significance of AUROC values between different tools 
by the student’s t-test [39], as shown in Table 5.

Webserver

We established an online webserver to simultaneously identify m1A and m.6A modi-
fications in H. sapiens to facilitate scientific research. The user-friendly webserver for 
EMDLP was publicly available at http://​www.​labiip.​net/​EMDLP/​index.​php (http://​47.​
104.​130.​81/​EMDLP/​index.​php). The usage guide of the webserver for EMDLP is as 
follows. Open the home page at http://​www.​labiip.​net/​EMDLP/​index.​php (http://​47.​
104.​130.​81/​EMDLP/​index.​php). First, clicking the "Prediction" button and selecting 

Table 3  Evaluation results of the DCB model based on One-hot encoding, RNA word embedding, 
Word2vec, and RGloVe

The bolded values represent the best results

Modification 
type

Classifiers AUROC Acc (%) Sn (%) Sp (%) MCC (%) Pre (%) F1 (%) AUPRC

m1A DCBOne-hot 0.9410 95.37 64.04 98.51 69.66 81.11 71.57 0.7812

DCBEmbedding 0.9409 95.37 65.79 98.33 70.0 79.79 72.12 0.7715

DCBword2vec 0.9316 95.29 61.4 98.68 68.72 82.35 70.35 0.7349

DCBRGloVe 0.9468 95.45 64.04 98.6 70.12 82.02 71.92 0.7866
m6A DCBOne-hot 0.8300 74.51 72.25 76.76 49.06 75.57 73.87 0.8080

DCBEmbedding 0.8477 76.52 83.30 69.79 53.56 73.28 77.97 0.8272

DCBword2vec 0.8317 75.10 79.60 70.62 50.43 72.95 76.13 0.8126

DCBRGloVe 0.8486 76.36 84.2 68.57 53.41 72.72 78.04 0.8310

http://www.labiip.net/EMDLP/index.php
http://47.104.130.81/EMDLP/index.php
http://47.104.130.81/EMDLP/index.php
http://www.labiip.net/EMDLP/index.php
http://47.104.130.81/EMDLP/index.php
http://47.104.130.81/EMDLP/index.php
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the "m1A" or"m6A" successively, the page will appear, as shown in Fig.  6a. Second, 
Type or paste an RNA sequence in the input box. Third, leave your email in the input 
box, clicking the "submit" button, and the predictive results will appear on a new 
page, as shown in Fig. 6b.

Fig. 4  Performance of EMDLP and other methods on the independent test

Table 4  Compare EMDLP model

The bolded values represent the best results

Modification 
type

Classifiers AUROC Acc (%) Sn (%) Sp (%) MCC (%) Pre (%) F1 (%) AUPRC

m1A EDLm6Apred 0.9494 95.06 64.91 98.07 68.10 77.08 70.47 0.7773

DeepPromise 0.9437 95.30 65.79 98.25 69.57 78.95 71.77 0.7893

DCBDeepPromise 0.9529 95.61 67.54 98.42 71.67 81.05 73.68 0.7809

EMDLP 0.9556 95.62 61.40 99.04 70.69 86.42 71.79 0.8044
m6A EDLm6APred 0.8085 73.38 80.14 66.66 47.23 70.52 75.02 0.7905

DeepPromise 0.8476 77.07 82.15 45.00 54.43 74.79 78.30 0.8258

DCBDeepPromise 0.8501 76.76 81.89 44.95 53.81 74.19 77.85 0.8292

EMDLP 0.8524 76.98 84.36 69.64 54.58 73.44 78.52 0.8319
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Discussion
This paper proposes EMDLP to identify RNA methylation sites in an NLP and DL way. 
The specific discussion is as follows:

Firstly, this study compared the performance of predicting m1A and m6A methyla-
tion sites under four different sliding window sizes (i.e., 8, 15, 30, and 60) based on 
the RGloVe and GloVe encoding methods. The evaluation results show that using 
RMSProp instead of Adagrad to minimize the loss function of the global vector 

Fig. 5  Boxplot of eight metrics for comparative performance assessment of the four methods based on 
the pAerformance of 100 replications of four methods. a for the m1A independent dataset. b for the m6A 
independent dataset

Table 5  Statistically significant correlation matrix for the difference in the performance of the four 
classifiers

Modification 
type

Classifiers Classifiers

EDLm6APred DeepPromise DCBDeepPromise EMDLP

m1A EDLm6APred

DeepPromise 6.80137E-27

DCBDeepPromise 2.14723E-11 5.22548E-34

EMDLP 8.734E-20 4.51535E-37 0.01606677

m6A EDLm6APred

DeepPromise 1.7731E-122

DCBDeepPromise 3.3248E-133 2.05181E-42

EMDLP 8.6672E-142 6.72773E-87 3.06352E-20
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model can indeed train the model more effectively. This result is consistent with that 
of Ruder, S. (2017), who pointed out that RMSProp can overcome the weakness of 
Adagrad. RGloVe shows the best prediction performance when the sliding window 
length = 30.

Secondly, based on the feature representation of the sequence by the above 
RGloVe, this study compared the DCB model with the CNN, DCNN, and BiLSTM 
models for predicting methylation modification sites. The experiment result shows 
the AUROC of DCNNRGloVe is 0.57% and 0.74% higher than CNNRGloVe’s on m1A and 
m6A. This study confirms that the multiscale convolution kernels can extract differ-
ent features to provide deep semantics. The experiment results show that the train-
ing time of BiLSTMRGloVe is very long, and it is several times that of DCBRGloVe. That 
also accords with Min, X.’s conclusion, which showed that the max-pooling layer of 
the DCNN stage reduces the parameters of the network, which plays an active role 
in lowering dimensionality and computational complexity. The experimental results 
show that the DCBRGloVe model is superior to other models in predicting m1A and 
m6A sites. This study confirms that the combination of DCNN and BiLSTM makes 
the understanding of sequence semantics more accurate.

Third, based on the above self-built DCB model, this paper compared the predic-
tion performance of RGloVe, RNA word embedding, One-hot encoding, and word-
2vec. The results reveal that Our RGloVe outperforms the other three encoding 
schemes in prediction performance. This finding is consistent with Pennington, J 
(2014), who proposed that GloVe shows higher semantic accuracy than word2vec.

Finally, EMDLP was constructed by a soft vote to use the three predictors to obtain 
better predictive performance. This paper compared the prediction performance of 
EMDLP, DeepPromise, DCBDeepPromise, and EDLm6Apred based on the independent 
datasets. The results show that the AUROC of EMDLP is significantly better than 
the three methods. This study further indicates that RGloVe can better represent the 
semantic information of sequences than the other four encodings, and DCB is more 
suitable for extracting the RNA sequence’s features than the other methods.

Fig. 6  Screenshot of EMDLP webserver. a Site input interface of EMDLP. b The prediction result returned by 
EMDLP
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Conclusions
The contribution of this paper proposes a predictor EMDLP to identify RNA meth-
ylation sites by NLP and DL way. It organically combines the dilated convolution and 
BiLSTM, which helps take better advantage of the local and global information for site 
prediction.

Although EMDLP outperforms state-of-the-art predictors, which is currently limited 
to humans and has not been extended to other model organisms due to the lack of a 
sufficient number of single-nucleotide datasets for other species. It is worth looking for-
ward to testing the performance of EMDLP when sufficient other species RNA modifi-
cation datasets become available in the future.

Materials and methods
Datasets

We have extracted two common types of human RNA modification site datasets pub-
lished at single-nucleotide resolution, including m1A and m6A. For the m1A and m6A 
sites, the datasets in this paper were derived from the previous studies of Chen et al. [12] 
and Zou et al. [30], respectively. The only difference is that the Zou validation set was 
used as the independent test set of this paper on the m6A site.

The study divided the dataset into two parts: a benchmark dataset for cross-validation 
testing and an independent dataset for independent testing. It took the modified/non-
modified site as the center for each sample and brought the (2n + 1)-nt partial sequence 
window. It was worth noting that the "n" for these two modifications was different. 
Referring to the experimental results in Chen’s paper, the size of the optimal window 
was 101 and 1001 for m1A and m6A sites[12], respectively. If the length of the original 
sequences were shorter than 2n + 1, the empty positions would be filled with the char-
acter "-" to ensure the sequence length is consistent. The ratio of positive and negative 
samples of m1A sites and m6A sites was 1:10 and 1:1, respectively. The statistic of these 
two RNA modification datasets is shown in Table 6.

Feature encoding representation on different perspectives

As we all know, feature encoding is the key to evaluating the excellent performance of 
site prediction models. This paper encodes the sequences by RNA word embedding, 
One-hot encoding, and RGloVe.

One-hot encoding is a sparse binary, high-dimensional word vector, while RNA 
word embedding is a continuous, low-dimensional dense word vector that captures 

Table 6  A statistical of these two RNA modification datasets

BM benchmark; IND independent

Modification type Dataset Window size Number of positive 
samples

Number of 
negative 
samples

m1A m1A_BM 101 593 5930

m1A m1A_IND 101 114 1140

m6A m6A_ BM 1001 26,586 27,371

m6A m6A_IND 1001 6879 6914
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the local semantic information. RGloVe inherits the principle of GloVe, which cap-
tures the global semantic information.

One-hot encoding is a very simple encoding method to describe the nucleo-
tides sequence. The four nucleotides and the the gap symbol "-" are encoded 
as 

∑
= {A,C,G, T,−} , where A = (1,0,0,0,0), C = (0,1,0,0,0), G = (0,0,1,0,0), 

T = (0,0,0,1,0), and "-" = (0,0,0,0,1). Take m1A as an example, a sequence of 101nts is 
transformed to 505-bit vectors.

RNA word embedding is a standard method for encoding RNA sequences. A sliding 
window of size k slides on the RNA sequence by overlapping an equal length to form 
a k-mer sub-sequence, and these sub-sequences are created as a vocabulary. Take 
m1A as an example. A sequence of 101nts is converted to 99 sub-sequence through 
a sliding window of size 3. The study obtained 105 different sub-sequences, which 
are indexed by a unique integer index. Each pre-processed sequence is changed with 
an integer index and fed into the Keras embedding layer to generate 300-dimension 
word vectors. Thus, the 101nts sequences are transformed into a matrix of 99 × 300.

RNA word embedding only considers the frequency information but neglects the 
context and global information. Word2vec only trains independently by information 
from each local context window, while it does not use the statistical data in the global 
co-occurrence matrix [35]. Pennington et al. [40] proposed global vectors(GloVe) that 
can consider the statistical data in the global co-occurrence matrix and used Adag-
rad to train GloVe word embeddings [41]. But, Adagrad has a primary weakness, 
which can cause the learning rate of Adagrad to decrease and get extremely small, at 
which point the algorithm can not learn new information [41]. Therefore, the study 
uses RMSProp instead of Adagrad to minimize the loss function of the global vector 
model. The word vector trained by this method is called RGloVe. The specific analysis 
process is as follows.

The statistics of k-mer incidence is the most important data source for learning embed-
ding representations. Y denotes the matrix of co-occurrence counts, and Yij records the 
frequency of the word k-mer j appearing in the context sliding windows of the word k-
mer i. i, j ∈ [1, W ] are two k-mer indexes, the vocabulary size W = 105. According to the 
GloVe model, we get the embedding vector by training the cost function under,

where e ∈ R
D are expected embedding vectors, Qe ∈ R

D are separate context k-mer vec-
tors that help obtain e , b, b̃ ∈ R are the biases for e, ẽ respectively. f (y) is a non-decreas-
ing weighting function below

where ymax is a maximum cutoff value and β denotes the fractional power scaling, which 
is commonly 0.75.

The original GloVe uses Adagrad [42] to minimize Eq. (7). At every time step t , the 
specific iterative rules are as follows:

(7)K =
W∑

i, j=1

f (Yij)(e
T
i ẽj + bi + b̃j − log Yij)

2

(8)f (y) =
{
(y/ymax)

β if y<ymax

1 otherwise
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where zt, i indicates the gradient of the objective function, φt, i is the parameter at a time 
step t . The Adagrad update for every parameter φt, i at each time step t are as follows:

where α indicates the learning rate, Zt, ii ∈ R
d×d is a diagonal matrix where each diago-

nal element i, i is the sum of the gradients’ squares. φt, i up to time step t, δ is commonly 
1 e − 8.

The primary deficiency of Adagrad is its accumulation of the squared gradients in the 
denominator, at which point the algorithm stops learning new information [41]. The 
RMSprop algorithm solves this flaw by reducing its monotonically decreasing learning 
rate. RMSprop does not accumulate all past square gradients but limits the window of 
accumulated past gradients to a fixed size ξ . The total of gradients is recursively defined 
as a decaying average of all past square gradients rather than merely keeping ξ previous 
square gradients [41]. At time step t , the running average E

[
z2
]
t
 depends on the previ-

ous average E
[
z2
]
t−1

 and the current gradient z2t :

at each time step t , the RMSprop update for every parameter φt below:

The momentum term � is usually set to 0.9 or a similar value, while the learning 
rate of RMSprop α is 0.001. We use RMSprop to minimize Eq.  (7) and obtained the 
D-dimensional embedding vector representations e1, e2, e3, . . . eW ∈ R

D . According to 
the vectors, the study has completed the embedding encoding of representation learning 
fembedding (x) : CL �→ R

L×D by embedding each k-mer into the vector space RD:

where x = [x1, x2, x3, . . . , xL] ∈ C
L . We carried out the convolution stage based on the 

output L× D matrix.
Take m1A as an example. If the dimension is 300, the 101nts sequences are trans-

formed into a matrix of 99 × 300. Three feature encoding input and output formats are 
in Table 7.

Dilated convolutional neural network

Holschneider et al. [43] were the first to develop dilated convolution, which kept the fea-
ture map’s resolution by introducing holes into the regular convolution [44]. Compared 
to ordinary convolution, dilated convolution adds a hyperparameter named dilation 
rate(DR), which corresponds to the number of kernel intervals, such as DR = 1 in ordi-
nary convolution.

(9)zt, i = ∇φt F(φt, i)

(10)φt+1, i = φt, i −
α√

Zt, ii + δ
· zt, i

(11)E
[
z2
]
t
= �E

[
z2
]
t−1

+ (1− �)z2t

(12)φt+1 = φt −
α√

E
[
z2
]
t
+ δ

· zt

(13)fembedding (x) = [ex1 , ex2 , ex3 , . . . exL ]
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When applied to a one-dimensional situation, dilated convolution can be calculated as 
Eq. (14). Different dilution rates can be regarded as inserting varying sizes of blank rows 
between each kernel of convolution, as shown in Additional file 1: Fig. S1.

where xj is the jth element of input, yj denotes the output of the jth element in the 
DCNN, ω is the weight of the filter, N is the length of the filter, r is known as the DR.

In addition to the dilated convolution, the DCNN comprises the pooling and dropout 
layer. The pooling layer is applied to each feature map and outputs the average or maxi-
mum value of the input in a pooling window so that the pooling layer can reduce the 
number of parameters.

The dropout layer is used to avoid overfitting during model training and is the most 
commonly used regularization technique. In each training activity during forward-
ing propagation, some neurons are randomly set to zero, which intuitively leads to 
the integration of different networks. The dropout rate is the probability of a neuron 
withdrawing.

In this study, dilated convolutional layers of three dilation rates(DR = 1, 2, and 3, 
respectively) are concatenated to send to the BiLSTM stage.

Bidirectional LSTM

BiLSTM is a specific sort of recurrent neural network(RNN) that combines forward 
LSTM and backward LSTM. Among them, forward LSTM calculates the hidden features 
in the forward direction and saves the output at each moment 

−→
h2,

−→
h3 , ...

−→
h5 . With the 

same reasoning, backward LSTM calculates the hidden features in the reverse direction 
and saves the output at each moment 

←−
h5 ,

←−
h4 , ...

←−
h2 , as shown in Additional file 1: Fig. S2. 

Ultimately, the final result is derived from merging the output values of the forward and 
backward LSTM layers at each instant.

The LSTM [45] framework addresses the exploding or disappearing gradients in 
RNNs. Commonly, the LSTM unit is defined as a current input xt , a memory unit Ct , 
an input modulation vector C̃t  , a hidden state ht , a forget gate ft , an input gate it , and an 
output gate ot at the moment t , as shown in Additional file 1: Fig. S3.

Among them, a memory unit Ct is controlled by three "gates": a forget gate ft , an input 
gate it , and an output gate ot , where their entries are in [0, 1]. The following are the 
LSTM transition equations:

(14)yj = f (

N∑

n=1

xj+r∗nωn + b)

Table 7  Input and output formats with three kinds of feature encoding

Modification type Encoding method Input Output

m1A One-hot 101 × 1 101 × 5

RNA word embedding 99 × 3 99 × 300

RGloVe 99 × 3 99 × 300

m6A One-hot 1001 × 1 1001 × 5

RNA word embedding 999 × 3 999 × 300

RGloVe 999 × 3 999 × 300
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where W  and U are the weight metrics, b represents bias, σ is the logistic Sigmoid func-
tion, ∗ represents element-wise multiplication.

LSTM has been demonstrated significant benefits in modeling time series data attrib-
utable to features of its engineer. BiLSTM combines forward and backward LSTM, 
which overcomes the vanishing or exploding gradients and evaluates the context’s mean-
ing [25].

Site prediction based on dilated convolutional Bidirectional LSTM

The study combined the DCB model with three encoding methods: RNA word embed-
ding, one-hot encoding, and RGloVe to create three modification site predictors. Con-
sider the RGloVe predictor, as shown in Fig. 7.

Suppose that we have N RNA sequences of L0-length. Each has a binary label indicat-
ing whether it is a methylation modification site, meaning N-labeled samples {xn, yn}Nn=1 
yn ∈ {0, 1} . For each sequence xn with A, C, T, G nucleotides, and "-", we split it into 
sub-sequences by using a split window. Each sub-sequence containing k nucleotides is 
called the k-mer motif. We extract the sub-sequence of length k with stride s, resulting 
in a k-mer motif of length L = [(L0 − k)/s] + 1 . Take m1A as an example. A sequence 
of L0 = 101nts is converted to 99 sub-sequence through a split window of size k = 3 and 
stride s = 1, where all these 3-mers have a positive integer index in the set C = [1, 2, 3, 
4…, 105], and sequence data x ∈ C

L.
The following content will specifically introduce learning a feature map f : CL �→ R

d 
that maps x ∈ C

L into feature vectors h ∈ R
d useful for DL tasks.

We used DCB with k-mer embedding to train the model, as shown in Fig. 7. The repre-
sentation learning function f : CL �→ R

d can be separated into four stages:

The embedding stage calculates the co-occurrence statistics of k-mers and maps them 
to the D-dimensional space RD.

The DCNN stage has three blocks of DCNNs, and the dilution rate of three DCNNs 
is 1, 2, and 3, respectively. A dilated convolutional layer with the rectified linear unit 

(15)ft = σ(Wf xt +Uf ht−1 + bf )

(16)it = σ(Wixt + Uiht−1 + bi)

(17)C̃t = tanh(Wcxt + Ucht−1 + bc)

(18)Ct = ft ∗ Ct−1 + it ∗ C̃t

(19)ot = σ(Woxt +Uoht−1 + bo)

(20)ht = ot ∗ tanh(Ct)

(21)h = f (x) = fBiLSTM
(
fconcat

(
fDCNN

(
fembedding (x)

)))
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(ReLU) as its active function, a max-pooling layer, and a dropout unit are all included 
in each DCNN block. We used the grid-search strategy for the optimization of hyper-
parameters. There are 64 convolution kernels with a size of 3 each. For the max-pool 
layer, the size of the max-pool windows is 2. The drop rate is set at 0.2 to avoid overfit-
ting. The concatenate stage concatenates the three blocks of DCNNs to build a multi-
scale feature extractor. The BiLSTM stage applies a Bi-direction LSTM network to the 
input in order to collect long-term data dependency information between the data. 
The number of neurons is set at 64, and the drop rate is 0.2. After the BiLSTM stage, 
the data were flattened into one dimension by the flatten layer, followed by a fully con-
nected layer. The fully connected layer consists of three full connections, which con-
tain the number of neurons is 256,128,64, activated by ReLU function, and dropout 

Fig. 7  structure of our computational framework based on RGloVe, DCNN, and BiLSTM neural network to 
predict m1A methylation site
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with a probability of 0.5. Finally, the output layer calculates the probability score to 
indicate the likelihood of the site being modified with the Sigmoid function as follows:

(22)⌢
y(x) = sigmoid(x) =

1

1+ e−x

Fig. 8  Structure of EMDLP predictor. The diagrams depicted our method’s architecture. Three different DL 
classifiers predicted the methylation sequences and decided the final finding by a soft vote
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Ensemble‑based site prediction

Various encoding techniques will observe the sequences from various perspectives. 
RNA word embedding and One-hot encoding emphasize the local information, while 
RGlove employs global statistics to learn the global semantics. As a result, different pre-
dictors may have complementary impacts on prediction. Based on the DCB model, three 
predictors are constructed by RNA word embedding, One-hot encoding, and RGloVe. 
Finally, EMDLP was formulated with the three predictors above by a soft vote, as shown 
in Fig. 8.
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