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Introduction
Drug-Drug interactions (DDIs) refer to the presence of one drug changing the phar-
macological activity of another, which may produce some side effects and even injury 
or death. At the same time, multiple drug combinations to treat diseases are inevita-
ble. So, it is crucial to predict potential DDI. Traditional methods of DDI prediction 
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Results:  In this paper, we propose a multi-type feature fusion based on graph neural 
network model (MFFGNN) for DDI prediction, which can effectively fuse the topologi-
cal information in molecular graphs, the interaction information between drugs and 
the local chemical context in SMILES sequences. In MFFGNN, to fully learn the topo-
logical information of drugs, we propose a novel feature extraction module to capture 
the global features for the molecular graph and the local features for each atom of the 
molecular graph. In addition, in the multi-type feature fusion module, we use the gat-
ing mechanism in each graph convolution layer to solve the over-smoothing problem 
during information delivery. We perform extensive experiments on multiple real data-
sets. The results show that MFFGNN outperforms some state-of-the-art models for DDI 
prediction. Moreover, the cross-dataset experiment results further show that MFFGNN 
has good generalization performance.

Conclusions:  Our proposed model can efficiently integrate the information from 
SMILES sequences, molecular graphs and drug-drug interaction networks. We find that 
a multi-type feature fusion model can accurately predict DDIs. It may contribute to 
discovering novel DDIs.
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depend on in vivo and in vitro experiments. However, due to its limited environment, 
too small scale, cumbersome and expensive process, the ability to predicting DDI is 
greatly limited. Therefore, an efficient computational method is needed to predict 
DDI.

In the past several years, people have proposed methods based on machine learn-
ing [1–4] to solve this problem. Qiu et  al. [5] summarized some methods based on 
machine learning. Deng et  al. [6] used chemical structure to learn the representa-
tion of DDIs in representation module, and then predicted some rare events with few 
examples in comparing module. Deng et  al. [7] predicted DDI using different drug 
features and constructed deep neural networks (DNN). Zhang et al. [8] predicted DDI 
using manifold regularization.

Recently, graph-based representation learning has been applied to Drug-Drug inter-
action. Drugs are compounds, each of which can be represented by a molecular graph 
with the atom as the node and the chemical bond as the edge, or a Simplified Molecu-
lar Input Line Entry System (SMILES) sequence. In Drug-Drug interaction networks, 
by treating the drug as the node and the interaction as the edge, DDI prediction can 
be regarded as link prediction tasks. Graph neural network (GNN) has made some 
progress in DDI prediction [9–13]. Feng et al. [14] predicted DDI using Graph Con-
volutional Network (GCN) and DNN. In addition, there are also many methods about 
multi-type DDI prediction [15–17]. Nyamabo et al. [18] proposed to predict DDIs by 
the interactions between drug substructures. Then, Nyamabo et al. [19] used gating 
devices to learn the chemical substructures of drugs. Chen et al. [20] used the bi-level 
cross strategy to fuse the structural information and knowledge graph information of 
drugs.

Although the models mentioned have achieved significant results, there are still some 
limitations: (i) The models mentioned are generally limited to only considering the struc-
ture, sequence or interaction information of the drugs, without considering the synergis-
tic effects between them. (ii) For molecular graphs, only applying GNN can extract the 
local features for the atoms of the molecular graph, but it is difficult to propagate the 
information in the graph remotely to capture the global features for the molecular graph. 
(iii) In drug-drug interaction networks, node features obtained by stacking multi-layer 
GNNs will be smoothed and blurred, which loses the diversity of node features.

To address above issues, this paper proposes an end-to-end learning framework for 
DDI prediction, namely MFFGNN. In MFFGNN, we first utilize deep neural networks 
to capture the intra-drug features from SMILES sequences and molecular graphs. For 
SMILES sequences, MFFGNN applies the bi-directional gate recurrent unit neural net-
work [21] to extract local chemical context information from the sequences. For molec-
ular graphs, MFFGNN not only utilizes graph interaction networks [22] but also graph 
warp unit [23] to extract both the global features for the molecular graph and the local 
features for each atom of the molecular graph. In addition, MFFGNN takes the intra-
drug features as the initial features of the nodes in the DDI network and uses GCN 
encoder to fuse the intra-drug features and external DDI features to update the drug 
representation. Finally, we predict the missing interactions in the DDI graph through 
Multi-layer Perceptron (MLP).

Overall, the main contributions of this paper are summarized as follows:
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•	 We propose a novel model MFFGNN for DDI prediction, which fuses the topologi-
cal information in molecular graphs, the interaction information between drugs and 
the local chemical context in SMILES sequences.

•	 To better learn the topological structure of drugs, we propose a molecular graph fea-
ture extraction module (MGFEM) to extract the global features for the molecular 
graph and the local features for each atom of the molecular graph.

•	 We conduct extensive experiments on three real datasets with different scales to 
demonstrate the superiority of our model.

Related works
Drug‑drug prediction

Drug-Drug prediction has always been a worthy research direction in pharmacology. 
Most of previous work depended on in vivo and in vitro experiments. However, they do 
not scale well due to the limitations of the laboratory environment [24]. Subsequently, 
machine learning has been proposed to solve this problem. Similarity-based methods 
calculated specific similarity measures [25–29], e.g., drug structure, targets, side effects, 
genomic properties, therapeutic, etc., while combined with machine learning models for 
drug prediction. Ryu et al. [30] predicted the type of drug-drug interactions using DNN 
based on the similarity of the chemical structure of drugs. Graph-based methods pre-
dicted drug-drug interactions by learning the molecular graph [31] or interaction graph 
[32]. Shang et al. [33] modeled drugs as nodes and DDI as links, so tasks as link predic-
tion problems.

Graph neural network

Recently, as a neural network method on graph domain, the study of graph neural net-
work (GNN) has received great attention. With the development of GNN, many vari-
ants based on GNN came out one after another [34–36]. Rahimi et al. [37] proposed to 
control the transmission of neighbourhood information through gating operation. With 
the increasing popularity of GNN, researchers are using GNN models for DDIs [38]. For 
example, Duvenaud et  al. [39] used GNN to perform molecular modeling by extract-
ing molecular circular fingerprints. Lin et al. [40] used knowledge graph neural network 
(KGNN) to mine their associated relations in knowledge graph to solve the DDI predic-
tion problem. Bai et al. [41] proposed to learn drug feature representation by a Bi-level 
Graph Neural Network (BI-GNN) to solve biological link prediction tasks. MIRACLE 
[42] is most relevant to our work.

Methods
Preliminaries

We define the drug set as D={d1, . . . , dn} and its corresponding SMILES sequence set as 
Q = {q1, q2, . . . , qn} , where n represents the number of drugs. We define the molecular 
graph as G = (V,E) , where V and E represent the sets of atoms and chemical bonds, 
respectively, and interaction graph as G = (G,L) , where L represents the links between 
drugs. We use dh to define the dimension of the representation of the atom and chemical 
bond and dg to define the dimension of the representation of the drug.
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Problem description The DDI prediction problem is regarded as the link prediction 
task on the graph. The interaction graph N  can be represented by an adjacency matrix 
A ∈ R

n×n with each element aij ∈ {0, 1} . Given two drug nodes, the DDI prediction 
problem is defined to predict whether there is an interaction between them.

Overview of MFFGNN

The framework of MFFGNN is shown in Fig. 1, which is divided into the following four 
modules. In Molecular Graph Feature Extraction Module (MGFEM), we use the graph 
interaction network with graph wrap unit to extract the topological structure features of 
the drug from a given molecular graph. In SMILES Sequence Feature Extraction Module 
(SSFEM), we employ the bi-directional gate recurrent unit to extract local chemical con-
text from a given SMILES sequence. In Multi-type Feature Fusion Module (MFFM), we 
apply GCN encoder to fuse the intra-drug features and external DDI features to update 
the drug representation. Finally, we predict the missing interactions in the DDI graph 
through MLP.

Molecular graph feature extraction module

The Molecular Graph Feature Extraction Module (MGFEM) is shown in Fig. 2. Molecu-
lar graphs are an important expression for drugs. We use RDKit [43] tool to construct the 
molecular graph G based on SMILES sequence. First, we obtain the initial features v(in)i  
of each atom according to atom symbol, formal charge, whether the atom is aromatic, 
its hybridization, chirality, etc. Similarly, we obtain the initial features e(in)ij  of each bond 
according on the type of bond, whether the bond is in a ring, whether it is conjugated, etc. 

Fig. 1  Overview of MFFGNN, where 
⊕

 is sum. The MFFGNN uses SMILES sequences and molecular graphs 
as inputs to the model, and then extracts the intra-drug features through the MGFEM and SSFEM modules, 
respectively. Then, MFFGNN fuses the intra-drug features and external DDI features through MFFM module to 
obtain the updated drug features. Finally, the final predicted value is obtained by DDI predictor
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Fig. 2  Overview of MGFEM. The MGFEM module applies graph interaction network and graph wrap unit 
to extract local information and global information of the molecular graph. When extracting the local 
information, the module updates the edge feature before updating the node feature. When extracting the 
global information, the module utilizes a supernode to promote the global propagation of information
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Then, the initial atom and chemical bond features are transformed to Rdh through a layer 
neural network, and the calculation process is as follows:

where ReLU is the activation function, W(0)
v  and W(0)

e  are the learnable weight matrices. 
To fully extract atom and chemical bond features, we apply graph interaction networks 
[22]. In graph interaction network, firstly, the features of edge eij are updated according 
to the features of its connected nodes and itself, and the process is as follows:

where || is concatenation operation, W(l)
e  and b(l)e  are the learnable weight matrix and 

the bias of the edge update, respectively. Then, the node features are updated according 
to the features of its connected edges and itself, and the calculation process is as follows:

where N(i) represents the neighbor of node i.
The above processes can only spread the features of atoms and chemical bonds locally, 

but cannot spread information globally. Therefore, we propose to extract the global features 
of the molecular graph by applying graph warp unit (GWU) [23]. The properties of the 
whole drug often influence drug-drug interaction prediction. The GWU consists of three 
parts: supernode, transmitter and warp gate.

Supernode: We add a supernode to the graph, which can connect every atom in the 
molecular graph. Then, the sum of all atom features is taken as the initial feature of the 
supernode, g(0) ∈ R

dh , that is:

Then, the features of the supernode are updated by a single-layer neural network:

where W(l)
g  are the learnable weight matrix.

Transmitter: The transmitter part gathers information from the atoms and the super-
node. Before propagating the atom features to the supernode, we need to transform the 
form of the information. Different atom features have different degrees of importance rela-
tive to the global features. Therefore, the transmitter part applies the multi-head attention 
mechanism to aggregate different atom features. The calculation process is as follows:

(1)v
(0)
i = ReLU(W(0)

v v
(in)
i )

(2)e
(0)
ij = ReLU(W(0)

e e
(in)
ij )
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(l)
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(l)
i ||v

(l)
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(4)ṽ
(l+1)
i =ReLU[(v

(l)
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e
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∑
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v,i v
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where v(l)v→s represents the information propagated from each atom to the supernode 
at the lth layer, α(k ,l)

v,i  represents the significance score of node i at the kth head and the 
lth layer, ⊙ represents the product of the elements and k = 1, 2, . . . ,K  , K represents the 
number of heads. The information propagated from the supernode to each atom is cal-
culated by the following formula:

where g(l)s→v represents the information propagated from the supernode to each atom at 
the lth layer.

Warp Gate: The warp gate combines the transmitted information and sets the gating 
coefficients to control the fusion of information. For each atom, gated interpolation is 
used to fuse the information from the supernode g(l)s→v with the updated atom features 
v
(l)
i :

where α(l)
s→i represents the gating coefficient during the transmission from supernode 

to each atom and v(l)s→i represents the information transmitted to each atom. For super-
node, gated interpolation is used to fuse information from atoms v(l)v→s with updated 
supernode features g̃(l):

where α(l)
i→s represents the gating coefficient during the transmission from atom to 

supernode and g(l)i→s represents the information transmitted to supernode. Finally, the 
updated features of each atom and supernode are calculated through the gated recurrent 
units (GRU) [44]:

By applying this module to the whole dataset, we obtain the feature matrix G ∈ R
n×dg 

based on the molecular graph.
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)
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)

(13)g
(l)
i→s =

(
1− α

(l)
s→i

)
⊙ g̃(l) + α
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SMILES sequence feature extraction module

Drugs are commonly represented by the SMILES sequences, which are composed 
of molecular symbols. SMILES sequences also contain rich features compared with 
molecular graphs. The molecular graphs of the drug provide how the atoms are con-
nected, while the SMILES sequences provide the functional information of the atoms 
and long-term dependency representations. To capture the local chemical context in 
SMILES sequences, we first utilized the embedding method to construct an atomic 
embedding matrix, and then input it into the Bi-directional Gate Recurrent Unit 
(BiGRU) neural network to obtain the entire drug representation. SMILES Sequence 
Feature Extraction Module (SSFEM) is shown in Fig. 3.

Nowadays, most methods encode SMILES sequence by label or one-hot encoding. 
However, one-hot encoding and label ignore the context information of the atom. 
Therefore, to explore the function of the atom in the context, we propose to encode 
SMILES sequences by an advanced embedding method, Smi2Vec [45]. Specifically, for 
SMILES sequences q1 , we divide them into a series of atomic symbols by space. Then, 
we map each atom to an embedding vector according to the pre-trained embed-
ding dictionary. Finally, we aggregate the embedding vectors of atoms to obtain an 
embedding matrix X ∈ R

m×dh , in which m is the number of atoms and each row is the 
embedding of an atom.

We apply a layer of BiGRU [21] on the embedding matrix X . BiGRU trains the input 
data with two GRUs in opposite directions, as shown in Fig.  3. The current hidden 
state of BiGRU can be described as follows: −→st=GRU(xt ,−−→st−1) and ←−st=GRU(xt ,←−−st−1) 
, where GRU(·) represents a non-linear transformation of the input vector. Therefore, 
the hidden state st at time t can be expressed by the weighted sum of −→st  and ←−st  , which 
is expressed as follows:

where Wt and Vt represent the weights, and bt represents the bias. Then, we use a fully 
connected layer as the readout layer to obtain the drug representation. By applying this 
module to the whole dataset, we obtain the sequence-based feature matrix S ∈ R

n×dg.
Note that we should input a fix-sized matrix into the BiGRU layer. However, the 

length of the SMILES sequence varies. We use the approximately average length of 
the sequences in the dataset as the fixed length and apply zero-padding and cutting 
operations.

(17)st = Wt
−→
st + Vt

←−
st + bt

Embedding

N

1

C

... ...

C

NCC1(CC(O)=O)CCC

CC1
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GRU

GRU GRUGRU

GRU GRU
forward

backward

x(t-1) x(t) x(t+1)

s(t+1)s(t)s(t-1)
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READOUT

Input:
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Output:
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Fig. 3  Overview of SSFEM. The SSFEM module applies Smi2Vec and BiGRU to extract features from SMILES 
sequences. Then, the whole drug features are obtained through the readout layer
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Multi‑type feature fusion module

We combine the feature matrices G and S obtained above to obtain the intra-drug features, 
namely H = G

⊕
S . In order to fuse the intra-drug features with the external DDI features, 

we design a GCN encoder with the gating mechanism. Specifically, we take the intra-drug 
features as the initial node features in the interaction graphs, and then update the node rep-
resentation by multi-layer GCN. The Multi-type Feature Fusion Module (MFFM) is shown 
in Fig. 4.

For drug di , the output of rth layer is as follows:

where Wr
u is learnable weight parameter. Ãij is the component of the normalized adja-

cency matrix Ã . Ã = K̂− 1
2 (A + In)K̂

− 1
2 where K̂ii =

∑
j (A + In)ij . We can add multiple 

GCN layers to expand the neighborhood of label propagation, but it may also cause the 
increase of noisy information. Meanwhile, the neighborhoods of different orders contain 
different information. Therefore, we utilize the gating mechanism [37] to control how 
much neighborhood information is passed to the node. The process is as follows:

where T (cr−1) represents the gating weight of the (r − 1)th layer, (Wr−1,br−1) are weight 
matrix and bias variable of the (r − 1)th layer. After multi-layer GCN, we finally obtain 
the feature matrix Z ∈ R

n×dg for drugs in DDI Network.
In addition, inspired by MIRACLE, the module uses the graph contrastive learning 

approach to balance the information inside and outside of the drug. For the drug di , we 
take itself and its first-order neighboring nodes as positive samples P and the nodes not in 
first-order neighbors as negative samples N. We design a learning objective, which made 
external features of drug di consistent with internal features of positive samples and distinct 
from internal features of negative samples, defined as follows:

(18)zri = ReLU(
∑

j∈N (i)

Ãijz
r−1
j Wr

u)

(19)T (zr−1
i ) = σ(Wr−1zr−1

i + br−1)

(20)zri = zri ⊙ T (zr−1
i )+ zr−1

i ⊙ (1− T (zr−1
i ))

(21)Lc = − log σ(fD(hi, zi))− log σ(1−fD(h̃i, zi))

Fig. 4  Overview of MFFM, where G is gating and G̃ is 1-gating. The MFFM takes the intra-drug features as 
the initial node features in DDI network, and then update the node representation by multi-layer graph 
convolution neural network with gating
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where fD(·) :R
dg ×R

dg �−→R is the discriminator function, which scores agreement 
between the two vectors of the input. Here we set it to the point product operation.

DDI prediction

Firstly, we obtain an interaction link representation by multiplying two drug representa-
tion. Then, we input it into the MLP to get the prediction score:

where MLP consists of two fully connected layers.
Our learning objective is to minimize the distance between the predictions and the 

true labels. The specific formula is as follows:

where yij is the real label for drug pair (di, dj) . Then, we unify the DDI prediction task 
and the contrastive learning task into a learning framework. Formally, the learning 
objective of our model is:

where α is a hyper-parameter used to control the magnitude of contrastive task.

Results
In this section, we design various experiments to demonstrate the superiority of the 
model MFFGNN.

Experimental setup

Datasets.  To verify the validity of our model on datasets with different scales, we evalu-
ate the proposed model in small, medium, and large datasets. In the small-scale dataset, 
the number of drugs is relatively small, but fingerprints of all drugs are available. In the 
medium-scale dataset, although the number of drugs is relatively large, there is only the 
same number of labeled DDI links as in small-scale dataset. In the large-scale dataset, 
most of drugs lack many fingerprints. Detailed information about the datasets can be 
seen in Table 1.

Note that we removed the SMILES sequences that cannot construct the graph in the 
dataset.

Baselines To demonstrate the superiority of our model, we compare MFFGNN with 
the following state-of-the-art models:

(22)ŷij = σ
(
MLP

(
zi ⊙ zj

))

(23)Lr = −
∑

lij∈L

yij log(ŷij)+ (1− yij) log(1− ŷij)

(24)L = Lr + αLc

Table 1  Detailed information about the datasets

Dataset Drugs DDI links Information

ZhangDDI [46] 548 48,548 Similarity

ChCh-Miner [47] 1514 48,514 –

DeepDDI [30] 1861 192,284 Polypharmacy side-effect
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•	 SSP-MLP [30]: This approach used the names and structural information of drug-
drug or drug-food pairs as inputs and applied Structural Similarity Profile (SSP) and 
MLP for classification. We name this model as SSP-MLP.

•	 Multi-Feature Ensemble [46]: This approach combined multiple types of data and 
proposed a collective framework. We name this model as Ens.

•	 GCN [48]: This approach applied GCN to perform semi-supervised node classifica-
tion. We use GCN to extract structural information of drugs for DDI prediction.

•	 GAT​ [35]: This approach used GAT to perform node classification task. We apply 
GAT to extract drug features in interaction graph for DDI prediction.

•	 SEAL-C/AI [49]: This approach performs semi-supervised graph classification tasks 
from a hierarchical graph perspective. We apply this model to obtain drug features 
for DDI prediction.

•	 NFP-GCN [39]: This approach designs a GCN for learning molecular fingerprints. 
We name this model as NFP-GCN.

•	 MIRACLE [42]: This approach simultaneously learned the inter-view molecular 
structure information and intra-view interaction information of drugs for DDI pre-
diction.

•	 MFs [50]: This approach only used molecular fingerprints as input to the DDI net-
work to predict DDIs, we name this model as MFs.

•	 We also consider several multi-type DDI prediction methods and apply them to 
binary classification tasks, i.e. DPDDI [14], SSI-DDI [18], DDIMDL [7], MUFFIN 
[20].

Implementation details For the division of the datasets, the splitting method is the same 
as MIRACLE [42]. We divide 80% of each dataset into the training set, 20% into the test 
set, and 20% of the training set are randomly sampled as the validation set. The data-
set only contains positive drug pairs. For negative training samples, we select the same 
number of negative drug pairs [51].

We utilize Adam [52] optimizer to train the model and Xavier [53] initialization to ini-
tialize the model. We utilize the exponential decay method to set the learning rate, where 
the initial learning rate is 0.0001 and the multiplication factor is 0.96. The model applies 
a dropout [54] layer to the output of each intermediate layer, where the dropout rate is 
0.3. We set the dimension of the atom-level and drug-level representations as 256. We 
set K = 2 in the multi-head attention mechanism. To evaluate the effectiveness of the 
model MFFGNN, we consider three metrics, including Area Under the Receiver Oper-
ating Characteristic curve (AUROC), Area Under the Precision-recall Curve (AUPRC) 
and F1.

Comparison results

To verify the validity of the proposed MFFGNN, we compare MFFGNN with state-
of-the-art models for DDI prediction on three datasets with different scales. Over ten 
repeated experiments, we give the mean and standard deviation.  The best results are 
highlighted in bold.

Comparison on the ZhangDDI dataset We compare the MFFGNN model with state-
of-the-art models on the ZhangDDI dataset, and the results are shown in Table 2. The 
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results of these baselines are obtained from Table  2 in Ref. [42]. As can be seen, the 
methods considering multiple features, such as Ens, SEAL-C/AI, NFP-GCN and MIRA-
CLE, perform better than the methods considering only one feature. However, the MFF-
GNN has the best performance. MFFGNN considers not only the topological structure 
information in molecular graphs and the interaction information between drugs, but 
also the local chemical context in SMILES sequences. This indicates that multi-type fea-
ture fusion can improve the performance of the model.

Comparison on the ChCh-Miner dataset Because the ChCh-Miner dataset lacks fin-
gerprints and side-effect information, we only compare the MFFGNN with the graph-
based models, and the results are shown in Table 3. The results of these baselines are 
obtained from Table  3 in Ref. [42]. As shown in Table  3, MFFGNN outperforms all 
baselines in all metrics, indicating that MFFGNN still maintain its effectiveness on the 
dataset with few labeled data. In addition, we obtain labeled training data with differ-
ent amounts by adjusting the proportion of the training set on the ChCh-Miner dataset. 
This can analyze the robustness of the MFFGNN. We compare MFFGNN with other 
methods, and the results are shown in Fig. 5a. The results show that MFFGNN has high 
performance even in a small amount of labeled data. The reason could be that (i) our 
model fuses topological structure, local chemical context and DDI relationships; (ii) our 
model extracts both the global features for the molecular graph and the local features for 
the atoms of the molecular graph; (iii) our model sets a gating mechanism for each graph 
convolution layer to prevent over-smoothing when stacking multi-layer GCN.

Comparison on the DeepDDI dataset To verify the scalability of MFFGNN, we perform 
comparative experiments on the DeepDDI dataset, and the results are shown in Table 4. 
Because there may be missing information in the large-scale dataset, we only choose the 

Table 2  Comparison results on ZhangDDI dataset

Method AUROC AUPRC F1

SSP-MLP 92.51 ± 0.15 88.51 ± 0.66 80.69 ± 0.81

Ens 95.20 ± 0.14 92.51 ± 0.15 85.41 ± 0.16

GCN 91.91 ± 0.62 88.73 ± 0.84 81.61 ± 0.39

GAT​ 91.49 ± 0.29 90.69 ± 0.10 80.93 ± 0.25

SEAL-C/AI 92.93 ± 0.19 92.82 ± 0.17 84.74 ± 0.17

NFP-GCN 93.22 ± 0.09 93.07 ± 0.46 85.29 ± 0.17

MIRACLE 98.95 ± 0.15 98.17 ± 0.06 93.20 ± 0.27

MFFGNN 99.06 ± 0.08 98.83 ± 0.16 97.97 ± 0.25

Table 3  Comparison results on ChCh-Miner dataset

Method AUROC AUPRC F1

GCN 82.84 ± 0.61 84.27 ± 0.66 70.54 ± 0.87

GAT​ 85.84 ± 0.23 88.14 ± 0.25 76.51 ± 0.38

SEAL-C/AI 90.93 ± 0.19 89.38 ± 0.39 84.74 ± 0.48

NFP-GCN 92.12 ± 0.09 93.07 ± 0.69 85.41 ± 0.18

MIRACLE 96.15 ± 0.29 95.57 ± 0.19 92.26 ± 0.09

MFFGNN 97.02 ± 0.25 98.45 ± 0.06 96.94 ± 0.39
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SSP-MLP model. And the NFP-GCN model has worse performance and space limita-
tion. We also ignore the experimental results. We use 881 dimensional molecular fin-
gerprints as the initial node features in the DDI graph for DDIs prediction. Meanwhile, 
we degrade multi-type DDI prediction methods and obtain binary prediction results on 
DeepDDI dataset.

As shown in Table 4, MFFGNN has high AUROC, AUPRC and F1. The MFs model is 
relatively poor in all metrics, which only contains one drug feature. Single feature can not 
comprehensively represent drug information, which will ultimately affect the prediction 
results. However, MFFGNN integrates the features from drug sequences and molecular 
graphs to input into DDI graph, so that a more comprehensive drug information can be 
learned. Although the SSI-DDI and MIRACLE models have higher AUROC metric than 
MFFGNN, MFFGNN has the highest AUPRC and F1 values. In general, the AUPRC 
metric is more important than the AUROC metric, because it penalizes false positive 
DDIs better. F1 focuses on the proportion that can correctly predict DDIs. The imbal-
ance of the data in the DeepDDI dataset may have a negative impact on the AUROC 
metrics of our model. However, this does not affect the performance of MFFGNN.

Cross-dataset evaluations To further evaluate that MFFGNN has good generalization 
performance, we perform cross-dataset evaluations. One dataset serves as the training 
set, while the other two serve as test sets. Because of the poor performance of other 
methods, we compare MFFGNN to three methods, including GAT, SEAL-C/AI and 
MIRACLE, and the results are shown in Fig. 6. As shown in figures, MFFGNN outper-
forms the other methods in AUROC, AUPRC and F1. From the above results, it can be 
shown that our model can predict drug-drug interaction with steady accuracy, inde-
pendent of the scale of the datasets. Through this experiment, we can also verify that 
MFFGNN has good generalization performance.

Ablation study

In order to verify the validity of each type of feature of drugs, we carry out DDI predic-
tions using each type of feature or combination of feature on ChCh-Miner datasets. The 
experimental results are shown in Table 5. The best results are highlighted in bold.

(a) Comparison results on ChCh-Miner dataset with different
training proportion

(b) Ablation experimental results on ChCh-Miner datasets

Fig. 5  Experimental results on ChCh-Miner dataset
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As shown in Table 5, deleting any one of these three types of the features will dam-
age performance. The performance is best when the three types of features are consid-
ered simultaneously. In addition, among single feature, considering only the interaction 

Table 4  Comparison results on DeepDDI dataset

The best results are highlighted in bold

Method AUROC AUPRC F1

SSP-MLP 92.28 ± 0.18 90.27 ± 0.28 79.71 ± 0.16

GCN 85.53 ± 0.17 83.27 ± 0.31 72.18 ± 0.22

GAT​ 84.84 ± 0.23 81.14 ± 0.25 73.51 ± 0.38

SEAL-C/AI 92.83 ± 0.19 90.44 ± 0.39 80.70 ± 0.48

MFs 91.54 ± 0.04 89.82 ± 0.24 83.05 ± 0.5

DPDDI 92.79 ± 0.38 91.15 ± 0.52 85.54 ± 0.40

SSI-DDI 96.14 ± 0.06 94.63 ± 0.47 92.27 ± 0.14

DDIMDL 94.85 ± 0.71 93.48 ± 0.07 82.31 ± 0.44

MUFFIN 95.26 ± 0.12 94.47 ± 0.28 91.22 ± 0.48

MIRACLE 95.51 ± 0.27 92.34 ± 0.17 83.60 ± 0.33

MFFGNN 95.39 ± 0.25 96.81 ± 0.16 92.54 ± 0.61

(a) Training set: ZhangDDI Test set:
ChCh-Miner

(b) Training set: ChCh-Miner Test
set: ZhangDDI

(c) Training set: DeepDDI Test set:
ZhangDDI

(d) Training set: ZhangDDI Test set:
DeepDDI

(e) Training set: ChCh-Miner Test set:
DeepDDI

(f) Training set: DeepDDI Test set:
ChCh-Miner

Fig. 6  Cross-dataset experimental results

Table 5  The performance of different types of features on ChCh-Miner dataset

The best results are highlighted in bold

 S SMILES sequence, M molecular graph, I interaction

Method AUROC AUPRC F1

S 90.17 ± 0.04 90.27 ± 0.18 89.14 ± 0.08

M 92.87 ± 0.74 92.55 ± 0.40 90.93 ± 0.56

I 93.23 ± 0.01 92.74 ± 0.15 90.28 ± 0.31

S+I 96.01 ± 0.83 96.89 ± 0.76 94.99 ± 0.23

S+M 95.49 ± 0.72 95.33 ± 0.54 95.02 ± 0.16

M+I 96.25 ± 0.05 97.23 ± 0.02 94.87 ± 0.05

S+M+I 97.02 ± 0.25 98.45 ± 0.06 96.94 ± 0.39
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information between drugs or the topological information of the molecular graph, the 
model has the great performance. Among pairwise feature combinations, consider-
ing the interaction information between drugs and the topological information of the 
molecular graph simultaneously performs best, and pairwise feature combinations can 
significantly improve performance than single feature. This suggests that multi-feature 
integration can better represent drugs and improve prediction results.

Our model considers the global features for the molecular graph and the local features 
for the atoms of the molecular graph. In order to study its effectiveness, we design a 
variant, namely -GWU. -GWU ignores the global information in molecular graphs. As 
shown in Table  6, deleting the global features will damage performance. To study the 
validity of contrastive learning, we design a variant, called -Contrastive. This variant 
removes the contrastive learning from the framework. As shown in Table 6, -Contrastive 
is inferior to MFFGNN in all metrics. The results show that contrastive learning is ben-
eficial to assist drug feature learning.

MFFGNN contains a GCN encoder with the gating mechanism to fully utilize the 
neighborhood information of different order. In order to study its effectiveness, we con-
duct a comparative experiment based on whether there is gating or not, and the results 
are shown in Table 6. The performance of the model without gating is lower than that of 
the model with gating. It can be proved that GCN encoder with gating is beneficial to 
predict DDI. From Fig. 5b, we can intuitively see the effectiveness of each component of 
the proposed MFFGNN.

Parameter analysis

In this section, we analyze several key parameters in the model by performing experi-
ments on the ZhangDDI dataset, including α in the objective function of our model, the 
dimensionality of drug representation dg , sequence length Ls , learning rate lr , the num-
ber of GCN layers Lm and k of the k-head attention in the MGFEM module. We study the 
influence of different key parameters settings on MFFGNN by fixing other parameters.

In order to study the optimal setting of α in the objective function of our model, we 
vary α from 0.1 to 1.0 and fix other parameters, the results are shown in Fig.  7a. We 
observe that the three metrics are optimal when α is set to 0.9. On the whole, the non-
zero nature of α proves the importance of contrastive learning in the model.

When training the BiGRU, we need to input a fix-sized matrix. However, the length 
of SMILES sequences varies. Therefore, we fix the length of the input sequence at some 
value and apply zero-padding and cutting operations. To study the optimal setting of 
sequence length, we vary Ls from 50 to 250 and fix other parameters, the results are 

Table 6  Ablation experimental results on ChCh-Miner dataset

The best results are highlighted in bold

Method AUROC AUPRC F1

–GWU​ 95.89 ± 0.15 97.26 ± 0.18 94.97 ± 0.67

–Gating 96.28 ± 0.23 97.78 ± 0.31 95.28 ± 0.20

–Contrastive 96.07 ± 0.28 97.85 ± 0.15 94.38 ± 0.06

MFFGNN 97.02 ± 0.25 98.45 ± 0.06 96.94 ± 0.39
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shown in Fig. 7b. Because most of the SMILES sequences in the dataset are less than 
150 and greater than 100, the model performance is optimal when Ls = 150 . When 
Ls = 150 , most of the sequences do not need to be cut, and little information is lost. 
But, when Ls = 100 , most of the sequences will lose information, and the performance 
is low. When the sequence length is greater than 150, even if zero-paddings are applied, 
the performance degradation could be trivial, because it contains enough sequence 
information.

In order to study the optimal setting of dg , we change it from 2 to 1024 and fix other 
parameters, and the results are shown in Fig. 7c. When dg is set to 256, the three metrics 
are optimal, and the model achieves the best performance. Specifically, with the increase 
of the dimensionality of drug representation, MFFGNN can extract more useful infor-
mation. However, a too high dimensionality may increase noise and lead to performance 
degradation. Similarly, in order to study the optimal setting of lr , we change lr with 
{0.01, 0.001, 0.0001, 0.00001} and fix other parameters, the results are shown in Fig. 7d. 
When lr = 0.0001, the model performance is best.

In order to study the optimal setting of Lm and k of the k-head attention in the MGFEM 
module, we change it from 1 to 4 and fix other parameters, the results are shown in 
Fig. 7e, f. For k of k-head attention, when k = 2 , the model performance is the best. As 
seen from the figure, as the Lm increases, the MFFGNN performance improves. When 
Lm = 3 , the three metrics are optimal and the model achieves the best performance. 
However, too many layers may cause overfitting and lead to performance degradation.

Discussions
Drug-Drug prediction has always been a worthy research direction in pharmacology. 
Most of the existing methods for predicting drug-drug interactions only consider sin-
gle drug feature. However, single drug feature cannot comprehensively represent drug 
information, which will ultimately affect the prediction results. Our proposed model 
takes into account not only the topological structure information in molecular graphs 
and the interaction information between drugs, but also the local chemical context in 
SMILES sequences. Multiple drug features will represent the drug information more 

(a) Parameter study of α (b) Parameter study of Ls (c) Parameter study of dg

(d) Parameter study of lr (e) Parameter study of k (f) Parameter study of Lm

Fig. 7  Parameter study on ZhangDDI dataset
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comprehensively. We perform DDI predictions using each type of feature or combina-
tion of features, and the experimenta results are shown in Table 5. When the three types 
of features are considered simultaneously, the model has the best performance.

When extracting information from the molecular graph, we extract the local fea-
ture of the atoms and the global feature of the whole molecular graph. This facilitates 
the remote propagation of the information in graph. We demonstrate the importance 
of the global features of the molecular graphs in the ablation experiments, and the 
results are given in Table 6. In addition, To verify evaluate that MFFGNN has good 
generalization performance, we perform cross-dataset evaluations, and the results 
are given in Fig. 6. As shown in figures, our model can predict drug-drug interaction 
with stable accuracy, regardless of the scale of the dataset. However, our model also 
has some limitations, for example, it does not extend to multi-type DDI prediction 
tasks. In future work, we will further generalize the model to predict multi-type DDIs 
events.

Conclusions
In this paper, we propose a novel end-to-end learning framework for DDI prediction, 
namely MFFGNN, which can efficiently fuse the information from drug molecular 
graphs, SMILES sequences and DDI graphs. The MFFGNN model utilizes the molec-
ular graph feature extraction module to extract global and local features in molecu-
lar graphs. Moreover, in the multi-type feature fusion module, we set up the gating 
mechanism to control how much neighborhood information is passed to the node. 
We perform extensive experiments on multiple real datasets. The results show that 
the MFFGNN model consistently outperforms other state-of-the-art models.
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