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Background
Protein–protein interactions (PPIs) are essential for growth, development, differ-
entiation and apoptosis [1]. As a result, studying PPIs is an important task and has 
constituted a major component of cell biochemical reaction network, which targets 
to reveal the functions of proteins at the molecular level. In general, the interactions 
between proteins are detected by some high-throughput biomedical experiments, 
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such as yeast two-hybrid screens [2], tandem affinity purification [3] and mass spec-
trometric protein complex identification [4]. The results achieved by them are reli-
able, but they cannot response the demand of booming data growth. On the other 
hand, they usually suffer from time-consuming and high cost. To address above limi-
tations, it is urgent to propose a not only low-cost, but high-efficiency computational 
model to identify PPIs.

With the development of computer technology, a large number of machine learning-
based methods are proposed and widely applied to the field of bioinformatics in recent 
years [5–9]. The majority of these machine learning-based methods is feature extraction. 
At an early stage, the computational methods can only extract characteristics from lim-
ited information of protein, such as protein structures, phylogenetic profiles, literature 
knowledge, network topology and genome [10–13], and then given a pair of proteins, 
predict the probability of the interaction between two proteins. However, limited by the 
available of extra information, the methods at that time are hard to apply without pre-
existing information. Thanks to the popularity of high-throughput sequencing technol-
ogy, protein sequence data now has become the most available information. As a result, 
nowadays, the computational methods are basically constructed based on protein amino 
acid sequence. Moreover, most of existing works show that it is enough to predict PPIs 
by extracting features from protein sequence information for its well performance [9].

Sequence-based approaches typically represent the protein sequence as a vector by 
feature extraction methods and predict PPIs by obtained vectors [14, 15]. For example, 
Romero et al. [16] extract the protein sequence feature by the general-purpose numeri-
cal codification of polypeptides, which transforms pairs of amino acid sequences into 
a machine learning-friendly vector, whose element represents numerical descriptors 
of residues in proteins, then classify the unknown protein pairs with SVM. Shen et al. 
[17] develop another computational method to learn conjoint-triad feature from protein 
amino acids and achieve a high predictive accuracy of 83.90% when applied on a dataset 
containing 16,000 diverse PPIs. Although these protein sequence-based methods obtain 
promising results, there is still a room for improvement by integrating multi-source pro-
tein information. For instance, Chen et  al. [18] construct a hybrid feature representa-
tion which is composed by three kinds of protein pair representations and then adopt a 
stacked generalization scheme that integrates five learning algorithms to predict PPIs. 
Wang et al. [19–21] explore the protein evolutionary feature from the prospective of the 
image processing techniques, which opens a new way of researching protein sequences. 
Though above computational methods finish the PPI prediction task well, these exist-
ing methods still discuss PPI prediction at only protein phase, ignoring the associations 
between proteins and any other molecules, such as miRNA, lncRNA, disease or drug. 
Therefore, it is feasible to predict PPIs from the view of molecular system.

To address above limitations, we propose a systematic and comprehensive model 
to predict PPIs by capturing inter-view protein sequences and intra-view interactions 
between molecules simultaneously. We firstly collect a heterogeneous molecular net-
work with nine proven interactions across four kinds of molecules and diseases. Then, 
the protein inter-view feature is extracted from its sequence by k-mer method, while the 
intra-view feature is obtained by encoding the heterogeneous network with popular net-
work embedding method LINE (Large-scale Information Network Embedding). Finally, 
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the aggregation of inter-view feature and intra-view feature is sent into Random Forest 
(RF) to predict potential PPIs. The contributions of this work are summarized as follows:

•	 We develop a novel multi-view heterogeneous molecular network representation 
learning framework, i.e., MTV-PPI, to predict potential PPIs based on both inter-
view feature and intra-view feature.

•	 MTV-PPI models both protein sequences and interactions between molecules to 
generate high representative aggregated features that are used to predict potential 
PPIs.

•	 We have conducted extensive experiments on a collected heterogeneous molecular 
network and the experimental results demonstrate the effectiveness of MTV-PPI.

Materials and methods
As shown in Fig.  1, MTV-PPI is composed of four steps, including i) heterogeneous 
molecular network construction, ii) inter-view feature extraction, iii) intra-view feature 
extraction, and iv) PPI prediction.

Heterogeneous molecular network construction

To predict PPIs from a systematical perspective, we first collect existing valuable nine 
protein-related association datasets to construct the heterogeneous molecular network, 
which is shown in Table 1.

As shown in Table 1, there are 19,237 validated PPIs in this collected heterogeneous 
molecular network, after performing the inclusion of identifier unification, de-redun-
dancy, simplification and deletion of the irrelevant items. The statistics of constructed 
heterogeneous molecular network is shown in Table 2.

Inter‑view feature extraction

After constructing the network, we collect the protein sequences from STRING data-
set [27] for extracting inter-view feature. However, the original sequence is composed 
by amino acids, which is not understandable for machine. As a result, it is necessary 
to embed the protein sequence into a machine understandable vector before extracting 
protein inter-view feature. According to the polarity of the side chain, Shen et al. [17] has 

Fig. 1  The overview of MTV-PPI
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categorized 20 amino acids into four groups, comprising (Ala, Val, Leu, Ile, Met, Phe, 
Trp, Pro), (Gly, Ser, Thr, Cys, Asn, Gln, Tyr), (Arg, Lys, His) and (Asp, Glu).

Inspired by Shen, we simply encode the sequences of proteins to a 64 ( 4 × 4 × 4 ) 
dimensional vector using the method of 3-mer. At the beginning of it, the vector is ini-
tialized to 0. Then, there is a sliding window with a length of 3, which is used to scan 
the whole sequence of protein with a step of 1. During that processing, the amino acid 
sub-sequence possessed in the window is recorded to the corresponding position of the 
vector. After the complement of sliding, the vector is normalized, then each dimension 
in the vector is the frequency at which the amino acid sequence appears in the original 
protein sequence. The reason for constructing 64-dimensional vectors is that there are 
64 possible sorts of amino acids in four. Finally, the vector obtained by 3-mer is attribute 
feature. The whole process is shown in Fig. 2.

Intra‑view feature extraction

In order to predict PPIs from a global perspective, network embedding, which targets 
to learn the representation of nodes from an original high-dimensional space into a 
low-dimensional vector space, is adopted in proposed model for extracting the intra-
view feature of protein from the heterogeneous molecular network. Currently, vari-
ous network embedding methods are proposed and they can be generally grouped 
into three categories, which are Matrix Factorization (MF)-based model [32], Ran-
dom Walk (RW)-based model [33, 34], and Neural Network (NN)-based model [35, 
36]. Taking both efficiency and model complexity into consideration, LINE [35] is 
integrated into our model to learn intra-view feature of protein. LINE maps the nodes 

Table 1  The statistics of associations in the heterogeneous molecular network

Type of associations Sources Number

miRNA-LncRNA lncRNASNP2 [22] 8374

miRNA-Disease HMDD [23] 16,427

miRNA-Protein miRTarBase [24, 25] 4944

LncRNA-Disease LncRNADisease [26], lncRNASNP2 [22] 1264

Protein–Protein STRING [27] 19,237

Protein-Disease DisGeNET [28] 25,087

Drug-Protein DrugBank [29] 11,107

Drug-Disease CTD [30] 18,416

LncRNA-Protein LncRNA2Target [31] 690

Total – 105,546

Table 2  The statistics of nodes in the heterogeneous molecular network

Type of nodes Number

Protein 1649

LncRNA 769

miRNA 1023

Disease 2062

Drug 1025
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in a large network to the vector space according to the density of their relationships, 
so that the closely connected nodes are projected into similar locations, and the tight-
ness of the two nodes is measured in network.

For the sake of learning local and global network structures, respectively, LINE 
defines the first-order proximity (see Fig.  3A) and the second-order proximity (see 
Fig. 3B) to consider network structures at both local and global levels. The first-order 
proximity in the network is the self-similarity between the two nodes. For each undi-
rected node pair (vi, vj) , the joint probability between node vi and vj can be simplied as 
follows:

where p1(vi, vj) denotes the first-order proximity between node vi and vj and �vi denotes 
the intra-view feature of node vi.

The second-order proximity between a pair of nodes (vi, vj) in a network is the 
similarity between their neighboring network structures. In mathematics, let 

(1)P1(vi, vj) =
1

1+ exp (−�vi
T
· �vj)

Fig. 2  An illustration of the process of extracting inter-view feature

Fig. 3  An illustration of first-order proximity and second-order proximity in LINE
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Pvi = (p1(vi, 1), p1(vi, 2), p1(vi, 3), ..., p1(vi, |V |)) denotes the first-order similarity 
between vi and all other nodes, then the second-order similarity between vi and vj is 
determined by Pvi and Pvj . The second-order proximity assumes that the nodes of the 
shared neighbor are similar to each other. Each node plays two roles: the node itself 
and the neighbors of other nodes. Thus, the probability that vi is a neighbor of vj is 
defined as:

In our model, we use the above two types of proximity to optimize the intra-view fea-
tures of protein nodes at the same time.

PPI prediction

After extracting protein inter-view and intra-view features, a concatenation aggregation 
function is adopted to generate the final protein representation. In specific, suppose the 
inter-view feature and intra-view feature of node vi are denoted as eviinter and eviintra , then the 
final representation for vi is formulated by:

where evi denotes the final representation of vi , W and b are trainable parameters.
In this study, the PPI prediction is viewed as a binary classification task. As a result, given 

a protein pair, their final representations are sent into classifier to predict if the two proteins 
are interacted with each other and we will discuss the effect of classifier in further section.

Performance evaluation indicators

The heterogeneous molecular network collected in this work consists of 19,237 PPIs and all 
of them are regarded as positive samples in MTV-PPI. To prove the effectiveness of MTV-
PPI, five-fold cross-validation is adopted to train MTV-PPI. In specificity, the entire PPIs 
positive samples are randomly divided into five equal subsets and negative samples are ran-
domly selected from the complement set of PPIs positive samples with an equal size for 
each subset. During the process of five-fold cross-validation, we take each subset as the test 
set and the remaining network excluding PPIs in test set as the training set, cycle five times 
in turn, and take the average of five times as the final performance of MTV-PPI.

Several criteria are used to evaluate proposed method, including accuracy (Acc.), sen-
sitivity (Sen.) and precision (Pre.), Area Under Curve (AUC) and Area Under Precision-
Recall (AUPR). These criteria defined below are sufficient to access the quality, robustness, 
and predictability of the model from different perspectives.

(2)P2(vi|vj) =
1+ exp (−�vi

T
· �vj)

∑|V |

k=1 exp ( �vk
T
· �vj)

(3)evi = σ(W · (e
vi
inter; e

vi
intra)+ b)

(4)Acc. =
TN + TP

FP + TP + FN + TN

(5)Sen. =
TP

TN + TP
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where FP, TP, FN and TN represent false positive, true positive, false negative and true 
negative, respectively.

Results and discussion
Baseline algorithms

For the purpose of demonstrating the effectiveness of MTV-PPI, we compare it with 
several state-of-the-art baseline algorithms as follows and their performances are also 
evaluated in the experiments.

•	 LR_PPI1 [37] is a sequence-based PPI prediction model, which applies stacked auto-
encoder to encode protein sequence and then predicts PPIs.

•	 DPPI2 [38] is also a sequence-based PPI prediction model, which applies convolu-
tional neural network combined with random projection and data augmentation to 
predict PPIs.

•	 WSRC_GE [39] extracts feature from protein sequence and then introduces a novel 
weighted sparse representation based classifier to finish PPI prediction task.

•	 LPPI3 [40] reconstructs a small scale weighted network according to protein basic 
information, then learns the protein network representation by DeepWalk and classi-
fies the PPI samples by Logistic Regression (LR).

•	 PIPR4 [41] incorporates a deep residual recurrent convolutional neural network in 
the Siamese architecture to predict PPIs based on protein sequences in an end-to-
end way.

Experiment settings

MTV-PPI integrates RF with default parameters to classify PPIs. For those baseline algo-
rithms, we first download their source codes provided by their developers or ask the 
source codes from its developers and then apply them on the proposed heterogeneous 
molecular network under five-fold cross-validation on our machine. During this pro-
cess, it should be noted that all the parameters used in these baseline algorithms are the 
same as their original works. Moreover, we randomly divide all approved PPIs as positive 
samples and then the same number of negative samples are randomly selected from the 
complement set of positive samples [42].

Prediction performance of proposed model

In this section, we test the proposed model under five-fold cross-validation on the heter-
ogeneous molecular network and Table 3 reports the results of each fold and the overall 
performance. According to the results, it can be observed that proposed model achieves 

(6)Pre. =
TP

TP + FP

1  https://​github.​com/​rasmu​sberg​palm/​DeepL​earnT​oolbox.
2  https://​github.​com/​hashe​mifar/​DPPI/.
3  https://​github.​com/​Blair​1213/​LPPI.
4  https://​github.​com/​muhao​ chen/​seq_​ppi.​git.

https://github.com/rasmusbergpalm/DeepLearnToolbox
https://github.com/hashemifar/DPPI/
https://github.com/Blair1213/LPPI
https://github.com/muhao%20chen/seq_ppi.git
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the performance with 86.55% of Acc., 82.49% of Sen., 89.79% of Pre., 0.9301 of AUC 
value and 0.9308 of AUPR value. In addition, we also show the standard deviation of 
each fold and it can be seen that proposed model is stability since the average standard 
deviations achieved by proposed model are only 0.005 of Acc., 0.0085 of Sen., 0.0088 of 
Pre., 0.005 of AUC and 0.0045 of AUPR.

Comparison with baseline models

We reimplement all baseline models on our machine and the results are shown in Table 4 
and Fig. 4. Regarding the results obtained by MTV-PPI and all baseline algorithms, we 
find that the performances of these algorithms vary greatly and proposed method MTV-
PPI achieves better results on most metrics. Compared with sequence-based algorithms 
(LR_PPI, DPPI, PIPR and WSRC_GE), MTV-PPI yields the best performance, improving 

Table 3  Predictive performance under each fold on heterogeneous molecular network

Best results are bolded

Fold Acc. Sen. Pre. AUC​ AUPR

0 0.8703 0.8264 0.9060 0.9341 0.9346

1 0.8732 0.8332 0.9056 0.9370 0.9378

2 0.8602 0.8181 0.8933 0.9234 0.9268

3 0.8617 0.8342 0.8828 0.9298 0.9270

4 0.8620 0.9124 0.9019 0.9262 0.9277

Overall 0.8655 ± 0.0050 0.8249 ± 0.0085 0.8979 ± 0.0088 0.9301 ± 0.0050 0.9308 ± 0.0045

Table 4  Results of various methods

Best results are bolded

Methods Acc. Sen. Pre. AUC​ AUPR

LR_PPI 0.7717 ± 0.0066 0.7551 ± 0.0090 0.7329 ± 0.0092 0.8482 ± 0.0060 0.8411 ± 0.0058

DPPI 0.8007 ± 0.0087 0.7623 ± 0.0099 0.7677 ± 0.0090 0.8726 ± 0.0076 0.8903 ± 0.0078

WSRC_GE 0.8225 ± 0.0105 0.7623 ± 0.0097 0.7987 ± 0.0123 0.9022 ± 0.0089 0.8975 ± 0.0086

LPPI 0.8062 ± 0.0116 0.9275 ± 0.0124 0.7232 ± 0.0103 0.8424 ± 0.0173 0.8022 ± 0.0154

PIPR 0.7536 ± 0.0090 0.7678 ± 0.0100 0.7456 ± 0.0098 0.8331 ± 0.0094 0.8246 ± 0.0096

MTV-PPI 0.8655 ± 0.0050 0.8249 ± 0.0085 0.8979 ± 0.0088 0.9301 ± 0.0050 0.9308 ± 0.0045

Fig. 4  ROC and PR curves obtained by MTV-PPI and all baseline algorithms
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the performance by approximately 7% on Acc., 5% on Sen., 15% on Pre., 0.08 on AUC 
and 0.08 on AUPR. The good performance is due to that MTV-PPI is capable of learn-
ing complex feature from the heterogeneous network and aggregating it with sequence-
based feature. Moreover, though LPPI predicts PPIs based on network, its performance 
is not as good as MTV-PPI by and large. However, it achieves better result on Sen. with 
about 10% higher when compared with MTV-PPI and this result is also better than that 
of all baseline algorithms. The possible reasons for this are two folds: (i) LPPI only uses 
protein properties to reduce the scale of network, but these properties are not adopted 
to the further process of LPPI, while MTV-PPI integrates protein attribute feature into 
final feature, which enrich the feature to a certain extent; (ii) LPPI may lose informa-
tion in the process of reducing the size of network when applied on the heterogeneous 
molecular network, while MTV-PPI is able to mine high-dimensional feature through 
on the whole heterogeneous molecular network.

Impact of aggregation function

The inter-view feature and intra-view feature are aggregated in a concatenation way. 
In order to prove the effectiveness of adopted aggregation function, we compare it 
with another widely used sum aggregation function [43], which is formulated by: 
evi = σ(W · (e

vi
inter + e

vi
intra)+ b) , where W and b are trainable weights. Figure 5 reports 

the results obtained by above two aggregators. It should be noted that the other parts of 
this variant are all the same as MTV-PPI except the aggregator.

According to the results shown in Fig. 5, we have found that concatenation aggrega-
tor adopted in MTV-PPI is superior to sum aggregator. The possible reason is that sum 
aggregator tends to detect the potential interaction between two features [43], which 
may not suitable for our model since the features used in MTV-PPI are extracted from 
two separate views.

Impact of network representation learning algorithm

In MTV-PPI, the intra-view feature is learned by a kind of NN-based representation 
learning methods, LINE. In this section, we also implement Laplacian and DeepWalk 

Fig. 5  Predictive performances with two different aggregators
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that belong to MF-based group and RW-based group, respectively, to validate the useful-
ness of LINE in current task. Figure 6 summarizes the experimental results and it can be 
observed that neither Laplacian nor DeepWalk is as effective as LINE, which may mainly 
because that both of them do not directly model the network topology, since Lapla-
cian learns the low-dimensional representations of protein nodes by MF and DeepWalk 
learns representations through network paths, while LINE designs two kinds of topo-
logical similarities to learn low-dimensional representations for protein nodes.

Impact of various feature representation

As mentioned above, MTV-PPI is capable of modeling both inter-view feature and 
intra-view feature simultaneously. In this section, we design two variants to detect the 
effects of above two features, respectively. The first one only takes inter-view feature into 
account, while the second one predicts PPIs only by intra-view feature. We also train and 
test them under five-fold cross-validation. Table 5 reports their performances and Fig. 7 
shows their ROC and PR curves, respectively.

According to the results, it can be observed that the model with only inter-view fea-
ture gets the worst performance among all metrics, which indicates that it is insufficient 
to predict PPIs on the heterogeneous molecular network with only feature extracted 
from protein sequence. Compared with inter-view feature, the model with intra-view 

Fig. 6  Results with different network embedding algorithms

Table 5  Predictive performance with different feature type

Best results are bolded

Feature 
Type

Acc. Sen. Pre. AUC​ AUPR

Inter-view 
feature

0.7491 ± 0.0090 0.6945 ± 0.0109 0.7797 ± 0.0103 0.8206 ± 0.0080 0.8185 ± 0.0181

Intra-view 
feature

0.8570 ± 0.0045 0.8130 ± 0.0105 0.8916 ± 0.0099 0.9240 ± 0.0046 0.9238 ± 0.0093

Aggre‑
gated 
feature

0.8655 ± 0.0050 0.8249 ± 0.0085 0.8979 ± 0.0088 0.9301 ± 0.0050 0.9308 ± 0.0045
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improves the performance by 10.79% on Acc., 11.85% on Sen., 11.19% on Pre., 0.1034 
on AUC and 0.1053 on AUPR, which demonstrates that intra-view feature is more con-
ductive to PPI prediction task on heterogeneous molecular network. Though intra-view 
feature performs much better than inter-view feature, the model with aggregated feature 
achieves the best performance. The reason for this is that aggregated feature contains 
both two features and is able to fuse two features in an appropriate proportion.

Impact of various machine learning classifiers

In proposed model, RF classifier is integrated as the default classifier. For the 
sake of proving the effectiveness of it, we select several state-of-the-art machine 

Fig. 7  ROC and PR curves obtained by various features

Table 6  Predictive performance with various classifiers

Best results are bolded

Classifier Acc. Sen. Pre. AUC​ AUPR

SVM 0.7103 ± 0.0078 0.7577 ± 0.0113 0.6921 ± 0.0074 0.7747 ± 0.0077 0.7686 ± 0.0074

LR 0.7056 ± 0.0072 0.7452 ± 0.0119 0.6905 ± 0.0067 0.7733 ± 0.0078 0.7667 ± 0.0076

NB 0.6772 ± 0.0084 0.7392 ± 0.0098 0.6578 ± 0.0090 0.7563 ± 0.0071 0.7827 ± 0.0075

AdaBoost 0.6946 ± 0.0088 0.7306 ± 0.0115 0.6816 ± 0.0090 0.7669 ± 0.0094 0.7713 ± 0.0086

XGBoost 0.8600 ± 0.0081 0.8867 ± 0.0063 0.8419 ± 0.0109 0.9326 ± 0.0051 0.9240 ± 0.0048

RF 0.8655 ± 0.0050 0.8249 ± 0.0085 0.8979 ± 0.0088 0.9301 ± 0.0050 0.9308 ± 0.0045

Fig. 8  ROC and PR curves obtained by various classifiers
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learning classifiers, including SVM [44], LR [45], Naïve Bayes (NB) [46], AdaBoost [47] 
and XGBoost [48], and apply them on the same heterogeneous molecular network with 
aggregated feature. All the other parameters are the same as original work. Table 6 and 
Fig. 8 shows the results of each classifier.

According to the results, the two linear classifiers (SVM and LR) have the similar per-
formances in predicting PPIs, but it yields about 16% lower than default classifier (RF) 
among all metrics on average, which indicates that linear classifier is not suitable to pro-
cess the feature extracted from such a complex network. As for the generation model, 
i.e. NB, it gets the worst performance with approximately 20% lower on Acc. than that of 
RF classifier. The possible reason for this is that NB classifier is constructed based on the 
assumption that each feature of the sample is independent [49], which is not suitable for 
proposed task. Though AdaBoost, XGBoost and RF all belong to integrated model, their 
performances are quite different. Among three classifiers, AdaBoost performs worst 
on classifying PPI samples, while XGBoost improves the performance by about 17% on 
Acc., 15% on Sen., 16% on Pre., 0.17 on AUC and 0.15 on AUPR. The possible reason is 
that XGBoost introduces regulations and the pruning strategy to better fit the positive 
samples, which is also the reason why XGBoost achieves high Sen. and AUC. However, 
RF achieves the best results on all metrics and it is more stable than others since it has 
smaller standard deviations. As a result, we finally select RF as default classifier of our 
model.

Impact of the type of heterogeneous molecular network

We have proved that heterogeneous molecular network helps to improve the perfor-
mance of PPIs predictor in the above section. However, there are five types of nodes 
in the network used in this paper, including miRNA, lncRNA, Drug, Disease, and Pro-
tein, which makes it difficult to determine which types of nodes/edges benefit to PPI 
prediction. To this end, we construct five sub-networks as shown in Table 7 and apply 

Table 7  The detail information of each subnetwork

Name # Nodes # Interactions

Protein–protein (PP) 1649 19,237

miRNA–protein–protein (MiPP) 2672 24,181

lncRNA–protein–protein (LncPP) 2418 19,927

Disease–protein–protein (DiPP) 3711 44,324

Drug–protein–protein (DrPP) 2674 30,344

Table 8  Experimental results obtained on each sub-network

Best results are bolded

Sub-network Acc. Sen. Pre. AUC​ AUPR

PP 0.8348 ± 0.0065 0.7869 ± 0.0094 0.8704 ± 0.0075 0.9047 ± 0.0038 0.9144 ± 0.0041

MiPP 0.8420 ± 0.0022 0.7936 ± 0.0055 0.8786 ± 0.0049 0.9095 ± 0.0020 0.9198 ± 0.0022

LncPP 0.8350 ± 0.0044 0.7865 ± 0.0086 0.8711 ± 0.0081 0.9042 ± 0.0028 0.9143 ± 0.0028

DiPP 0.8352 ± 0.0048 0.7796 ± 0.0064 0.8772 ± 0.0068 0.9053 ± 0.0031 0.9139 ± 0.0032

DrPP 0.8537 ± 0.0034 0.8057 ± 0.0052 0.8913 ± 0.0026 0.9213 ± 0.0039 0.9291 ± 0.0040

All 0.8655 ± 0.0050 0.8249 ± 0.0085 0.8979 ± 0.0088 0.9301 ± 0.0050 0.9308 ± 0.0045
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MTV-PPI on them under five-fold cross-validation to determine which type of network 
is the most informative. Table 8 reports the experimental results obtained on each sub-
network and it can be observed that: (i) Among five sub-networks, DrPP contributes the 
most to PPIs prediction as its superior performance when compared MiPP, LncPP and 
DiPP; (ii) Integrating miRNA into protein–protein network also significantly improves 
the performance of MTV-PPI; (iii) As for LncPP and DiPP, the effect of them is not obvi-
ous, even if the results on them are better than that of PP. In a word, DrPP is the most 
informative network for PPI prediction.

Conclusion
In this paper, we propose a computational model MTV-PPI to predict PPIs through a 
heterogeneous molecular network by modeling both inter-view feature and intra-view 
feature simultaneously. The inter-view feature is used to characterize the information 
of protein sequence, while intra-view feature is used to describe the network structure. 
MTV-PPI aggregates both two features and predict potential PPIs by RF classifier. By 
this way, MTV-PPI is capable of taking both protein sequence information and network 
structure into account. Obtained experiment results show that the aggregated feature 
contributes to the improvement of model performance and further experiment results 
indicate that MTV-PPI is a promising tool for predicting PPIs based on the heterogene-
ous molecular network. In further work, we are going to expand the scale of the network 
by adding more molecules [50], incorporate the relation semantics [51], and cluster-
ing technology [52, 53] to reduce the noises in heterogeneous network into our feature 
work.
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