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Abstract 

Background:  Several computational advances have been achieved in the drug 
discovery field, promoting the identification of novel drug–target interactions and new 
leads. However, most of these methodologies have been overlooking the importance 
of providing explanations to the decision-making process of deep learning architec-
tures. In this research study, we explore the reliability of convolutional neural networks 
(CNNs) at identifying relevant regions for binding, specifically binding sites and motifs, 
and the significance of the deep representations extracted by providing explana-
tions to the model’s decisions based on the identification of the input regions that 
contributed the most to the prediction. We make use of an end-to-end deep learning 
architecture to predict binding affinity, where CNNs are exploited in their capacity 
to automatically identify and extract discriminating deep representations from 1D 
sequential and structural data.

Results:  The results demonstrate the effectiveness of the deep representations 
extracted from CNNs in the prediction of drug–target interactions. CNNs were found 
to identify and extract features from regions relevant for the interaction, where the 
weight associated with these spots was in the range of those with the highest positive 
influence given by the CNNs in the prediction. The end-to-end deep learning model 
achieved the highest performance both in the prediction of the binding affinity and on 
the ability to correctly distinguish the interaction strength rank order when compared 
to baseline approaches.

Conclusions:  This research study validates the potential applicability of an end-to-end 
deep learning architecture in the context of drug discovery beyond the confined space 
of proteins and ligands with determined 3D structure. Furthermore, it shows the reli-
ability of the deep representations extracted from the CNNs by providing explainability 
to the decision-making process.
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Background
In silico methods have been responsible for major advances in the drug discovery field 
[1]. However, the accurate identification of drug–target interactions (DTIs) remains a 
decisive turning point in the discovery of new findings and in the understanding of 
the binding process. Thus, DTI prediction is vital for the development of new drugs, 
optimizing the whole process chain and leveraging the information available for drug 
repositioning [2].

Computational DTI prediction methods have been exploiting different properties 
and an experimentally validated characterization of the interaction to infer new 
relationships [3]. However, several of these studies rely on binary associations 
to conduct their experiments, neglecting the importance of the binding affinity. 
Therefore, the quality of the predictions is usually compromised or at least 
limited, particularly when considering secondary interactions with off-targets 
[4]. Furthermore, negative interactions are mostly based on hypotheses, leading 
to potential false negatives or eventually lack of target selectivity. Despite all these 
factors, the rise of interactions with known binding affinity measurements has 
been important to shift computational drug discovery into pursuing the use of 
these metrics to characterize binding associations, leading to meaningful findings 
[5]. Nevertheless, binding affinity prediction is substantially more challenging, in 
which several of these methods have been focusing on the use of biased interaction 
strengths, encouraging contradictory outcomes.

Deep learning is increasingly being employed in critical contexts such as drug 
discovery, given its capacity to outperform the traditional machine learning [6]. These 
architectures have been capable of retrieving unprecedented knowledge in DTIs, 
and identify complex patterns in drug and protein data collection. However, they are 
still considered to be opaque and devoided of transparency in their inner operations 
and results [7, 8]. Thus, it is vital to provide explanations for the reasoning behind 
the decisions of these architectures, considering that the results presented may have 
a great impact on the drug discovery pipeline. Nevertheless, the interpretability of 
these models may present an important opportunity to validate the results and lead to 
novel findings regarding key regions for the interaction (binding sites) [9].

In this work we make use of an end-to-end deep learning approach to predict drug–
target binding affinity measured in terms of the dissociation constant (Kd), where 1D 
sequential and structural data, protein sequences and SMILES (Simplified Molecular 
Input Line Entry System) strings, are used to represent the targets and compounds, 
respectively. We provide interpretability to the CNNs, present potential explanations 
for the decisions of the model by showing which inputs regions contributed the 
most for the predictions, and validate the effectiveness of the deep representations. 
Overall, in this study we investigate three critical points: a) efficiency of the deep 
representations in the prediction of a real-valued interaction strength; b) reliability of 
CNNs in the identification of important sequential and structural regions for binding; 
and c) robustness of the features extracted from relevant sequential regions.
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Binding affinity prediction

The interaction between an active compound and a protein is determined by 
comprehensive processes that are heavily reflected on the ligand’s binding affinity 
and bioactivity [10, 11]. The magnitude and rank order of the binding pair association 
is usually presented in terms of three different metrics: dissociation constant (Kd), 
inhibition constant (Ki) and half maximal inhibitory concentration (IC50) [12]. 
However, Kd is one of the few considered to be unbiased since it is not influenced by 
the experimental conditions, and expresses a direct measurement of the equilibrium 
between the receptor-ligand complex and the dissociation components, in which 
lower values are associated with strong interactions.

Computational drug discovery studies focused in the prediction of binding affinity 
have been initially driven by the necessity to account for more information in the 
scoring functions used in structure-based virtual screening. Machine learning methods, 
including Random Forest, and deep learning architectures, e.g., Feed-Forward Neural 
Network or 3D CNNs, have been explored as potential replacements for the scoring 
functions, predicting the binding affinity of protein-ligand complexes either based 
on different features associated with the 3D structures or 3D single instance learning 
[13–22]. Apart from improving the scoring functions, some research studies have been 
pursuing more realistic methodologies to predict DTIs, exploiting the problem as a 
binding affinity regression task, and making use of chemogenomic and lower structural 
data, e.g., 1D or 2D data. On that account, three benchmark datasets associated with the 
studies of Davis et al. [23], Metz et al. [24] and Tang et al. [25], measured in Kd, Ki and 
KIBA, respectively, have been exploited to conduct the experiments. In addition to some 
machine learning algorithms, including the Kronecker-regularized least squares [26] or 
gradient boosting regression trees [27], most of the inferring models have been based 
on the use of 1D CNNs, 2D CNNs or Graph CNNs, where different representations of 
the proteins and compounds have been explored, including 1D structures, 2D similarity 
matrices, feature vectors or even graph representations [28–35].

In spite of the existing binding affinity prediction methodologies, several of these 
studies still rely on the use of biased binding affinity metrics, i.e., dependent on the 
measurement conditions, mechanism of inhibition and concentrations [24, 25]. 
Furthermore, sequential and structural data are still seldomly used together, which is 
extremely limiting when inferring new interactions, considering that the features used 
to characterize the DTIs do not reflect the importance of the structural information, 
specifically related to binding sites. On that account, these models are unable to assess 
the magnitude of certain local regions in the prediction score. Moreover, binding affinity 
prediction models based on deep learning have yet to provide explainability to the 
predictions, compromising the validity of the results, and limiting the identification and 
comprehension of the underlying aspects around the interaction.

Explainable deep learning

The interpretability of deep learning architectures have been extremely questioned 
over the time, especially regarding their intrinsic operations, decisions and results [36]. 
On that matter, there have been several research advances regarding the explainability 
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of these models and it has been essentially achieved by either adapting the inner 
architecture (intrinsic interpretability) or performing external evaluations (post-hoc 
interpretability) [37].

Intrinsic interpretability focus on incorporating explainability directly into the 
structural units of the architecture (self-interpretable). On that account, attention 
mechanisms have been explored and incorporated in the architectures to condition 
the learning process, and provide interpretability through the visualization of the input 
regions that were given more attention (weight) [38, 39]. Apart from attention layers, 
local modifications on the units of the architectures, e.g., filters of CNNs, have also 
been presented to get interpretable knowledge representations [40]. On the other hand, 
post-hoc interpretability establishes a secondary model in order to provide explanations 
regarding the model behavior and inner operations. On that matter, methods based on 
local perturbations, including Prediction Difference Analysis [41] or Occlusion Analysis 
[42], have been explored to evaluate the model’s response based on general local 
perturbations, e.g., conditional sampling or masking parts of the input. Furthermore, 
propagation-based methods have also been considered to be efficient, leveraging the 
model’s internal structure for the explanation process. On that account, methods such 
Deconvolution [42], Layer Relevance Propagation [43] or Gradient-Weighted Class 
Activation Mapping [44], highlight the critical regions in the input for the prediction 
of the concept, in which the feature activity, the relevance score or the gradients of the 
model’s outcome are backpropagated to the input domain, respectively.

Methods
Binding affinity prediction

Drug–target interaction pairs

In order to establish the binding affinity prediction model, we obtained the data from the 
Davis et al. [23] research study, which comprises selectivity assays related to the human 
catalytic protein kinome measured in Kd, resulting in a total of 31,824 interactions 
between 72 kinase inhibitors (compounds) and 442 kinases (proteins).

The distribution of the binding affinity values is significantly skewed towards Kd 
equal to 10,000 nM (22,400 interaction pairs out of 31,824), which is associated with 
weak interactions, usually not observed or detected. Furthermore, the variance of 
this distribution is considerably high, since it ranges from values close to zero (strong 
interaction) to high values (weak binding). Hence, in order to avoid unnecessary high 
learning losses, the Kd values were transformed into the logarithmic space (pKd), 
spanning from 5 (10,000 nM) to around about 11.

Davis protein sequences were collected from UniProt [45] using the corresponding 
accession numbers. Considering that proteins are constituted by an unique amino acid 
sequence, where each amino acid is considered as a different feature, we have selected 
only proteins with a length between 264 and 1400 residues (95.7% of the information 
presented in the dataset) in order avoid increased noise or loss of relevant information. 
Protein sequences shorter than the maximum length were padded.

(1)pKd = −log10(
Kd

109
)
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The SMILES strings were initially extracted from PubChem [46] based on the com-
pound identifiers. In order to ensure a non data source dependent (consistent) nota-
tion to represent the chemical structure of all compounds, RDKit [47] canonical 
transformation was applied to every SMILES string. Even though the canonical nota-
tion does not include stereochemical information, it is a unique representation, where 
the atoms are consistently numbered. Similar to the protein sequences, we have con-
sidered only SMILES with a length between 38 and 72 characters, which corresponds 
to 95.8% of the information available. SMILES strings shorter than the maximum 
length were padded.

Table  1 summarizes the number of unique proteins, compounds, and DTIs, as well 
as the interactions with a pKd value equal to 5 and higher than 5 for the Davis kinase 
binding affinity dataset before and after pre-processing.

See Additional file 1: Fig. S1 for more details regarding the Davis dataset.

Data representation and encoding

Protein sequences and SMILES strings are constituted by different sequential and struc-
tural characters, respectively, which are used as input for the prediction model. A dic-
tionary-based approach was considered to encode each one of the characters into an 
integer based on the number of different characters, resulting in a 20-character diction-
ary for the proteins sequences and a 26-character dictionary for the SMILES strings. In 
order to normalize the importance of each one of these integers values and to preserve 
only the structural information, a one-hot encoding was applied, assigning a binary vari-
able for each unique integer value, converting every integer into a binary vector. Figure 1 
illustrates the dictionary-based approach and the one-hot encoding applied to the AKK1 
kinase.

Table 1  Davis kinase binding affinity dataset: unique kinases, kinase inhibitors, and DTIs before and 
after pre-processing

Proteins Compounds DTI pKd = 5 pKd > 5

Davis kinase dataset

Non-processed 442 72 31,824 22,400 9424

Pre-processed 423 69 29,187 20,479 8708

Fig. 1  Dictionary-based encoding followed by one-hot encoding applied to the kinase AKK1, where L is the 
length of the protein sequence
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Binding affinity prediction model

We make use of an end-to-end deep learning model based on CNNs and Fully-
Connected Feed-Forward Neural Networks (FCNNs) to predict a real-valued DTI 
strength measured in Kd, where 1D sequential and structural information, protein 
sequences and SMILES strings, respectively, are used as input.

The architecture of a CNN is organized as a series of layers, comprising convolutional 
and pooling layers. The convolutional layers are constituted by filters that slide over the 
input and convolute at each particular location, originating activation maps, which are 
used as input for the next layer. On the other hand, pooling layers reduce the spatial 
size of each feature map by replacing local patches of units to a single unit in order to 
preserve only the features associated with certain motifs rather than its exact location.

The protein sequences and SMILES strings are initially processed based on their 
length, and then encoded according to the dictionary-based approach mentioned in 
the previous section. Considering that these integer values are recognized as categori-
cal variables, an one-hot encoder layer was assigned to both protein sequences and 
SMILES strings, respectively. Following the one-hot encoding, two parallel series of 
1D convolutional layers were considered, one for the protein sequences and the other 
for the SMILES strings. These series are used to uncover deep patterns in the data, and 
automatically surmise and identify important sequential and structural regions for the 
interaction. Global max pooling was also applied, after each series of convolutional lay-
ers, in order to reduce the spatial size of each feature map to its maximum representative 
feature, since we are only interested in the most relevant motifs. The resulting deep rep-
resentations are then concatenated into a single feature vector, comprising the most rel-
evant sequential and structural features, and used as input for the FCNN, where dropout 
regularization was applied between each fully-connected layer. The architecture is then 
followed by an output layer, which is composed by one neuron that returns the real-val-
ued interaction strength measured in pKd. The implemented end-to-end deep learning 
architecture is illustrated in Fig. 2.

Chemogenomic representative K‑fold

In order to find the best model architecture and set of parameters, we propose a variation 
of the stratified K-fold cross-validation approach. In the context of the problem, a 
randomly split of the dataset leads to non-representative sets of DTIs, especially when 
considering an imbalanced distribution of pKd values and that the majority of the 
interactions are characterized with a pKd value equal to 5 (extremely weak interactions). 
Moreover, considering that 1D raw data is used to characterize the proteins and 
compounds, specifically the amino acid sequence and the SMILES string, respectively, 
the overall representability of the data plays an important role in the learning process 
of the architecture. Thus, in order to split the dataset into representatives sets, we have 
considered the proteins similarity, the compounds similarity and also the pKd values 
distribution during the splitting process.

The proposed method, chemogenomic representative K-fold, initially splits the data 
into two different groups according to the pKd value, specifically higher or equal to 5, 
respectively. Following the sampling process, the samples with a pKd value superior 
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than 5 are initially distributed across the different K folds based on the lowest 
similarity score (dissimilarity score). The first K samples of this group are assigned 
to each K set in order to initialize each fold, and the remaining NI − K  samples 
( NI is the number of DTI pairs in the dataset with a pKd value superior than 5) are 
distributed based on their dissimilarity score. The dissimilarity score corresponds to 
the lowest similarity score between the sample and each K set, in which the sample is 
assigned to the set with the lowest similarity score. The similarity score is computed 
as the weighted mean between the median value across all the protein sequences 
similarity scores and the median value across all the SMILES strings similarity scores, 
which are calculated (e.g., obtained from similarity matrices) between the sample and 
each entry in the corresponding set, i.e., between the protein sequence of the sample 
and all the protein sequences in the corresponding set, and between the SMILES 
string of the sample and all the SMILES strings in the corresponding set. In order 
to guarantee that each set is equally sized, only sets that had not previously been 
assigned a sample are considered at each step (until it is reset), thus, the dissimilarity 
score corresponds to the lowest similarity convex combination across all K −m sets, 
where m = 1, ..,K − 1 is associated with the number of sets that had previously been 
assigned a sample. Following the pairs with a pKd value superior than 5, this process 
is repeated for the remaining NII samples, which correspond to the DTI pairs with a 
pKd value equal to 5 (weak interactions).

Fig. 2  CNN-FCNN binding affinity prediction model
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Overall, this approach leads to equally sized representative sets, prioritizing the rele-
vant interactions. Furthermore, considering that this method splits the data according to 
the lowest similarity score (improved representability), it is possible to extract an inde-
pendent testing set in order to evaluate the generalization capacity of the model. The 
chemogenomic representative K-fold is illustrated in Fig. 3.

Explainable binding affinity prediction

Binding sites

The interaction between compounds and proteins results from the recognition and 
complementarity of certain key groups (binding sites). Considering the range of 
different regions across the whole structure of proteins and compounds, respectively, 
the relevance given to certain spots might introduce bias in the predictions. Thus, apart 
from providing visual explanations to the predictions inferred by the proposed model, it 
is determinant to evaluate the relevance and significance given to the regions identified 
as important for the prediction, i.e., the reliability of the model in the identification of 
binding spots as regions of interest.

We explored the sc-PDB [48] database, which contains some DTI pairs with the inter-
action regions known, although the number of DTIs with binding sites annotated rep-
resents only a small subset of the whole DTI universe. The DTI pairs from this database 
were initially pre-processed based on the taxonomic identifier (9606 - Homo sapiens), 
protein sequence and SMILES string lengths, and pKd values, where only pairs with 
a predicted pKd value superior than 5 were considered. The final DTI pairs were then 
divided into two groups, specifically those that are also present in the Davis dataset 

Fig. 3  Chemogenomic representative K-fold
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(Davis ∩ sc-PDB pairs) and the ones that are exclusively from the sc-PDB database. 
Table 2 summarizes the number of DTIs, the average number of binding sites for each 
DTI, and the number of unique proteins and compounds for the two datasets.

Position‑specific scoring matrices (PSSMs)

Many proteins are functionally and evolutionarily related, where certain regions (motifs/
profiles), usually associated with important protein functions/activities, e.g., binding, 
folding or secondary interactions, are conserved. Hence, in addition to understand if the 
CNNs are identifying and assigning importance to the binding sites, it is also relevant to 
explore if there is any association between the input regions selected by the model that 
are not in the vicinity of the binding regions and the motifs that are usually conserved. 
In order to obtain the PSSMs, we explored the stand-alone version of PSI-BLAST 
[49] from blast+ 2.11.0 [50], where the database selected was the non-redundant, the 
number of iterations was fixed at 3, the E-value chosen was 0.001, and the search was 
restricted to the taxonomic group 9606. Considering that the PSSM scores range from 
negative values up to a maximum of 10, we considered different thresholds to select the 
conserved motifs, specifically from 5 to 10. Table 3 summarizes the average number of 
conserved motifs for the Davis ∩ sc-PDB and sc-PDB pairs across different thresholds.

Gradient‑weighted regression activation mapping

Gradient-Weighted Class Activation Mapping (Grad-CAM) [44] is a gradient-based 
method that provides visual explanations for the decisions associated with CNN-
based architectures, producing coarse localization maps that highlight the important 
regions for prediction. This method is a generalization of the Class Activation Mapping 
(CAM) [51] and it uses the gradient information flowing into the last convolutional 
layer to assign importance to each neuron for a particular decision of interest. The 
class discriminative localization maps are obtained by performing a linear (weighted) 
combination of the forward feature maps of the convolutional layer with the neuron 
importance weights, which is followed by a linear rectification (ReLU) in order to obtain 
the features that have a positive influence on the class of interest.

Table 2  Binding sites data collection

Binding Sites  corresponds to the average number of binding sites annotated for each DTI

DTI Binding sites Proteins Compounds

Davis ∩ sc-PDB 32 16 27 8

sc-PDB 266 12 64 249

Table 3  Average number of motifs across the different thresholds

PSSM motifs threshold

≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10

Davis ∩ sc-PDB 276 162 88 45 19 11

sc-PDB 191 121 69 36 15 8
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where LcGrad−CAM ∈ Ruxv is the class discriminative localization map of width u and 
height v for the class of interest c, k is the number of feature maps, Ak is the kth feature 
map activations, and αc

k is the neuron importance weights connecting the kth feature 
map activations with the cth class. In order to obtain the neuron importance weights αc

k , 
which capture the importance of the feature map k for the target class c, the gradients 
of the score for the class of interest ( yc ) with respect to the feature map activations Ak 
of the convolutional layer are computed through backpropagation and global average 
pooled over the width and height dimensions of the feature map.

where 1Z i j corresponds to the global average pooling (Z is the number of pixels), 
∂yc

∂Ak
ij

 to the gradient of the score of class c with the respect to the feature map activations 

Ak , and i and j to the width and height dimensions, respectively, of the feature map.
In the context of the problem, we are interested in identifying the discriminative 

regions towards the regression outcome, specifically the sequential and structural 
regions in the protein sequences and SMILES strings, respectively, that were 
considered to be relevant for the prediction of binding affinity. On that account, we 
present an adaptation of the Grad-CAM approach, where we compute the gradients 
of the regression outcome with respect to the feature map activations, moving from 
CAM to Regression Activation Mapping (RAM). Similar to the initial approach, 
these gradients are global average pooled, resulting in neuron importance weights 
that capture the importance of the feature map activations for the interaction 
strength. Overall, this leads to regression discriminative localization maps, capable 
of explaining the output layer decisions by identifying the relevant sequential and 
structural regions for prediction.

where LGrad−RAM is the regression discriminative localization map for the predicted 
value ŷ , 1Z

∑

i

∑

j corresponds to the global average pooling, ∂ ŷ

∂Ak
ij

 to the gradient of the 

regression outcome ŷ with respect to the feature map activations Ak of the convolutional 
layer, and i and j to the width and height dimensions, respectively, of the feature map.

Global max pooling In image detection, global average pooling encourages the network 
to identify the complete extent of the object, since the average of a feature map takes 
into account both discriminative and low activation regions. However, in the context of 
the problem, the interaction is determined by structural and sequential regions scattered 
in a 1D dimension. Thus, global max pooling is of special interest since our goal is to 
identify single discriminative spots.

(2)LcGrad−CAM ∈ Ruxv = ReLU(
∑

k

αc
kA

k),

(3)αc
k =

1

Z

∑

i

∑

j

∂yc

∂Ak
ij

,

(4)LGrad−RAM = ReLU(
∑

k

(
1

Z

∑

i

∑

j

∂ ŷ

∂Ak
ij

)Ak),
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where LGrad−RAM is the regression discriminative localization map for the predicted 
value ŷ , max corresponds to the global max pooling, ∂ ŷ

∂Ak  to the gradient of the regression 
outcome ŷ with respect to the feature map activations Ak of the convolutional layer.

Guided (positive) gradients In the work of Selvaraju et al. [44], the authors proposed 
an adaptation of their method by suppressing negative gradients when backpropagating 
through ReLU layers. Considering that visualizing the sequential and structural regions 
that have the highest positive influence for the prediction of binding affinity is of special 
interest, we also explore the results achieved by masking all the gradient positions 
associated with negative values or where the activations of the feature map are not 
superior than zero.

where ∂ ŷ

∂Ak  is the gradient of the regression outcome ŷ with respect to the feature map 
activations Ak of the convolutional layer.

Experimental setup

Binding affinity prediction

The optimized architecture and set of parameters for the proposed model were 
determined by the chemogenomic K-fold cross-validation methodology, which requires 
a similarity matrix for all the pairs of protein sequences and SMILES strings. Hence, the 
similarity for the protein pairs was obtained using the Smith-Waterman local alignment 
algorithm. This method was implemented using the Biostrings R Package [52], where 
the substitution matrix selected was the BLOSUM62, and the gap penalty for opening 
and extension was fixed at 10 and 0.5, respectively. Furthermore, the final alignment 
scores were normalized to a [0,1] range using the approach mentioned in the work of 
Yamanishi et al. [53]:

where p1 and p2 are the two proteins of a certain pair ( p1 , p2 ). On the other hand, the 
similarity for the SMILES pairs was determined by the Tanimoto Coefficient, where 
the SMILES strings were initially converted to the Morgan circular fingerprints with 
a radius of 3, representing the presence or absence of particular substructures across 
the bitmap. The Tanimoto distance coefficient and the SMILES strings fingerprint 
transformation were implemented using the RDKit Python package [47]. Consequently, 
the dataset was splitted into six different folds, in which one fold was used to evaluate 
the generalization capacity of the model (independent test set) and the remaining folds 
for hyperoptimization (Additional file 1: Table S1 for more details).

We have hyperoptimized seven parameters: number of convolutional layers, number 
of dense layers, number of filters for each convolutional layer, filter length, number of 

(5)LGrad−RAM = ReLU(
∑

k

max(
∂ ŷ

∂Ak
)Ak),

(6)
∂ ŷ

∂Ak
= (Ak > 0) · (

∂ ŷ

∂Ak
> 0) ·

∂ ŷ

∂Ak
,

(7)SWNormalized(p1, p2) =
SW (p1, p2)

√

SW (p1, p1) ∗
√

SW (p2, p2),
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neurons for each dense layer, dropout rate and optimizer learning rate. During the cross-
validation process, a wide range of values was given for each hyperparameter.

Rectified Linear Unit (ReLU) was selected as the activation function for each 
convolutional and dense layers, with the exception of the final output layer which 
uses a linear activation. Additionally, considering that the proposed model focus on a 
regression task, the loss function selected was the Mean Squared Error (MSE). Regarding 
the optimizer function, Adaptive Moment Estimation (Adam) was used to update the 
network weights in each iteration of the learning process.

Furthermore, early stopping with a patience of 30 and model checkpoint were also 
considered in order to avoid potential overfitting, where the RMSE (Root Mean Squared 
Error) was evaluated at each epoch by these two callbacks. Overall, the hyperparameter 
combination that provided the best average RMSE score over the validation sets was 
selected as the best set of parameters to establish an optimized model and evaluate the 
generalization capacity on the test set. See Additional file 1: Table S2 for more details 
regarding the hyperparameters selected.

In order to validate the prediction efficiency of the end-to-end deep learning 
architecture (CNN-FCNN), we evaluated and compared the performance with different 
state-of-the-art baselines, specifically KronRLS [26], SimBoost [27], Sim-CNN-
DTA [33], DeepDTA [28], DeepCDA [32], and all the different formulations of the 
GraphDTA [31]. We have followed the same hyperparameter settings described in each 
one of these papers, with the exception of DeepCDA [32], in which we had to conduct 
hyperparameter search since the authors did not provide any reference values.

To further evaluate the efficiency of the CNN deep representations, we have compared 
the performance with Random Forest Regressor (RFR), Support Vector Regressor (SVR), 
Gradient Boosting Regressor (GBR) and Kernel Ridge Regression (KRR). Scikit-learn 
[54] was used to implement these models and the parameters were obtained using the 
chemogenomic K-fold cross validation approach (Additional file  1: Table  S2 for more 
details).

We used Python 3.7.9 and Tensorflow 2.4.1 to develop the model, and the experiments 
were run on 2.20GHz Intel i7-8750H and GeForce GTX 1060 6GB.

Explainable binding affinity prediction

We applied Grad-RAM to the implemented trained model, specifically to the last 
convolutional layers, in order to provide explainability to the predictions by connecting 
the features extracted from the CNNs to the input domain. However, in the context of 
the problem, the sole visualization of the input regions that had a positive influence in 
the prediction does not provide enough significance without any domain knowledge. 
Thus, we explored the matching and feature relevance correlation between the input 
regions that had a positive influence in the prediction and the spots associated with 
binding sites or motifs.

The binding sites (and motifs) are non-consecutive in a 1D representation. Hence, in 
order to reasonably evaluate the reliability of the CNNs in the identification of these regions 
as relevant for prediction, we considered the neighborhood of each single position. On that 
account, for each position p associated with a binding (or motif) region, the resulting pocket 
is given by an interval ]p− sw , p+ sw[ , where sw is the size of the window. Nevertheless, the 
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interval is always left or right bounded in the presence of another binding site (or motif) in 
order to avoid overlapping.
LGrad−RAM Matching The regression discriminative localization map provides 

information regarding the regions of the input that positive-influenced the prediction, 
and their relative importance (weight). On that account, the first evaluation step consisted 
in verifying if the CNNs are identifying the binding sites as relevant for the prediction 
of the binding affinity. We defined different window lengths, ranging from 0 (exact 
matching) to 5, and evaluated if in these window-based binding pockets the CNNs are 
extracting information from at least one position, considering that the binding spots are 
non-consecutive single positions. Furthermore, LGrad−RAM only contains values equal or 
superior than zero (positive influence). Thus, to evaluate the LGrad−RAM matching it is 
necessary to verify if there is at least one value superior than zero in the window-based 
binding pocket. Overall, we present this information as matching percentage corresponding 
to the weighted average of the average number of binding sites, wherein information is 
being extracted from at least one position, across all the DTI pairs.

where P is the number of DTI pairs, B is the number of binding sites associated with a 
certain DTI pair p, and W is the total length of the window-based pocket.

In the case of the conserved motifs, we also evaluated the LGrad−RAM matching for the 
positions outside the entire binding region, i.e., from the first to the last binding position.
LGrad−RAMFeature relevance In addition to the LGrad−RAM matching, it is critical to 

understand the significance of the features extracted from the window-based pockets, 
specifically if these features are in the range of those with highest positive influence. On 
that matter, we defined different thresholds of significance, ranging from the 10% to the 
70% highest positive-valued features, in order to perceive what percentage of the features 
extracted from the window-based pocket regions actually fall into these LGrad−RAM feature 
threshold distributions. Overall, the LGrad−RAM feature relevance is presented as the 
weighted average of the average number of positive features extracted from the window-
based pocket regions that belong to the feature threshold distribution across all the DTI 
pairs.

where P is the number of DTI pairs, F is the number of positive features extracted from 
all the window-based pockets, LGRp  is the regression discriminative localization map, and 
� is the significance threshold.

(8)
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Results and discussion
Prediction efficiency of the deep representations

The accurate and reliable prediction of a real-valued interaction strength is a critical 
point in the path of new findings regarding DTIs. In this study, we make use of an end-to-
end deep learning architecture, where CNNs are exploited to automatically identify and 
extract deep representations from relevant sequential and structural regions. In order 
to validate the prediction efficiency of the architecture, we evaluated and compared the 
performance with different state-of-the-art baselines. Additionally, we further validated 
the efficiency of the features extracted from the CNNs by evaluating and comparing the 
performance of these deep representations with some baseline models. Table 4 shows 
the binding affinity prediction results of the testing set in terms of five metrics: MSE, 
RMSE, Concordance Index (CI), Coefficient of Determination ( r2 ) and Spearman Rank 
Correlation (See Additional file  1: Table  S3 for the binding affinity prediction results 
using the same experimental setup as the state-of-the-art baselines).

The results demonstrate that the CNN-FCNN model achieved the highest 
performance in terms of MSE (0.177), RMSE (0.421), CI (0.915), Spearman (0.725) and r2 
(0.789), when compared to state-of-the-art baselines. Hence, it exceeds the other models 
in its capacity to correctly predict the binding affinity value (lower MSE and RMSE) and 
distinguish the binding strength rank order across DTI pairs (higher CI).

Regarding the efficiency of the deep representations, the results validate the 
effectiveness of CNNs in their capacity to extract relevant deep representations from 
sequential and structural data, especially when considering the performance achieved 
in terms of CI, which is significantly high across all models and superior than the 

Table 4  Binding affinity prediction results of the testing set

Bold indicates that the best performing values associated with each evaluation metric

RFR, random forest regressor; SVR, support vector regressor; GBR, gradient boosting regressor; KRR, kernel ridge regression

Method Protein Rep. Compound Rep. ↓ MSE ↓ RMSE ↑ CI ↑ r2 ↑ Spearman

Baseline Methods

KronRLS [26] Smith-Waterman PubChem-Sim 0.443 0.665 0.847 0.473 0.624

GraphDTA-GCN [31] 1D Graph 0.315 0.561 0.879 0.625 0.676

GraphDTA-GATNet 
[31]

1D Graph 0.307 0.554 0.875 0.634 0.670

SimBoost [27] Smith-Waterman PubChem-Sim 0.277 0.526 0.891 0.670 0.694

Sim-CNN-DTA [33] Smith-Waterman PubChem-Sim 0.266 0.516 0.884 0.683 0.674

GraphDTA-GIN [31] 1D Graph 0.255 0.505 0.889 0.696 0.690

GraphDTA-GAT-GCN 
[31]

1D Graph 0.254 0.504 0.885 0.697 0.683

DeepDTA [28] 1D 1D 0.222 0.472 0.888 0.735 0.678

DeepCDA [32] 1D 1D 0.202 0.449 0.882 0.760 0.668

Proposed Method

CNN-FCNN 1D 1D 0.177 0.421 0.915 0.789 0.725
Deep Representations 
Eval.

SVR CNN Deep Representations 0.203 0.450 0.907 0.759 0.714

GBR CNN Deep Representations 0.271 0.520 0.894 0.677 0.699

RFR CNN Deep Representations 0.283 0.532 0.895 0.663 0.703

KRR CNN Deep Representations 0.453 0.673 0.848 0.461 0.630
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state-of-the-art baselines (with the exception of the KRR model). Albeit the accurate 
prediction of the interaction strength value, assessed in terms of MSE and RMSE, is 
important in the context of the problem, the ability to correctly distinguish the binding 
strength rank order between two different DTI pairs is of special interest, since it allows 
to differentiate primary from secondary or not so relevant interactions. On that account, 
the deep representations extracted from the CNNs are efficient and discriminating in 
their capacity to describe DTIs and distinguish them based on their binding affinity 
values.

Additionally, the performance of the SVR model in terms of MSE (0.203), RMSE 
(0.450), CI (0.907), Spearman (0.714) and r2 (0.759) is considerably high and overall 
superior than all state-of-the-art baselines, despite it being a traditional machine 
learning approach. These findings demonstrate that the quality and discriminatory 
power of the input data have a great influence, validating once more the efficiency of the 
deep representations extracted from the CNNs in the prediction process.

Overall, the use of an end-to-end deep learning architecture to predict binding affinity 
demonstrates not only the ability of deep learning to automatically identify and extract 
discriminating features from drug and protein data collection, but also the capacity 
to learn complex and hidden knowledge related to DTIs for the prediction of binding 
affinity.

Figure 4 illustrates the predictions from the proposed model against the actual (true) 
binding affinity values for the Davis testing set, where it is possible to observe a signifi-
cant density around the predicted = true value reference line (perfect model).

Reliability of the CNNs in the identification of important regions for binding

Despite the prediction efficiency achieved, it is not possible to directly extract explana-
tions for the decision-making process solely based on the deep representations, since 
they are not (human) interpretable. In this study, we propose Grad-RAM to obtain 
regression discriminative localization maps, which provide information related to the 
regions of the input that had a positive influence in the prediction. In order to evalu-
ate the reliability of the CNNs in the identification of important regions for binding, we 
explored the correlation between the input regions that had a positive influence in the 

Fig. 4  CNN-FCNN model predictions against the true values for the Davis kinase binding affinity testing set, 
where the diagonal line is the refernece line (predicted = true value)
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prediction and the window-based pockets related to binding sites and motifs. Table 5 
and 6 summarize the LGrad−RAM matching (Eq. 8) for the binding sites of the Davis ∩ 
sc-PDB and sc-PDB pairs, respectively, across different window lengths and for the dif-
ferent formulations of the LGrad−RAM.

Regarding the differences in the formulation of LGrad−RAM , specifically between 
employing a global max pooling (GMP) instead of a global average pooling (GAP), 
and between using guided gradients (G) instead of non-guided gradients (NG), the 
results demonstrate that there is no significant difference, with the exception of the 
GAP-NG, which generates worse localization maps. On that account, considering that 
we are interested in the regions with the highest positive influence, we have determined 
GMP-G to be the most consistent combination, and therefore, used for the evaluations 
and comparisons.

The Binding sites - LGrad−RAM matching results demonstrate that the CNNs are iden-
tifying and extracting features from the window-based binding pockets without any a 
priori information, considering that there is relevant information being detected at every 
window length. Furthermore, the highest LGrad−RAM matching increase occurs between 
a window length 0 and 1, and between a window length 1 and 2 (20.74 - 46.32 - 53.29% 
and 16.51 - 39.14 - 49.37% for the Davis ∩ sc-PDB and sc-PDB pairs, respectively), show-
ing that the CNNs are extracting information essentially within the closer regions to the 
exact binding site location, in which with a window length of 2, the DTI pairs have in 

Table 5  Davis ∩ sc-PDB Binding Sites - LGrad−RAM matching results (Eq.  8) across different window 
lengths and for the different formulations of the LGrad−RAM , where lower and higher percentage 
values are associated with lower and higher number of window-based binding pockets where 
information is being extracted from at least one position across all the DTI pairs, respectively

GMP, global max pooling; GAP, global AVG pooling; G, guided gradients; NG, non guided gradients

Window length GMP-G GMP-NG GAP-G GAP-NG

0 20.74 20.74 20.74 19.57

1 46.32 46.32 46.32 42.83

2 53.29 53.29 53.29 50.39

3 56.98 56.98 56.98 54.07

4 60.66 60.66 60.66 57.95

5 61.24 61.24 61.24 58.72

Table 6  sc-PDB Binding Sites - LGrad−RAM matching results (Eq.  8) across different window lengths 
and for the different formulations of the LGrad−RAM , where lower and higher percentage values are 
associated with lower and higher number of window-based binding pockets where information is 
being extracted from at least one position across all the DTI pairs, respectively

GMP, global max pooling; GAP, global AVG pooling; G, guided gradients; NG, non guided gradients

Window length GMP-G GMP-NG GAP-G GAP-NG

0 16.51 16.51 16.51 15.08

1 39.14 39.14 39.14 36.93

2 49.37 49.37 49.37 46.89

3 56.92 56.92 56.92 53.99

4 63.33 63.33 63.33 60.53

5 66.85 66.85 66.85 64.44
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average around 50% or more of their window-based binding sites identified. Neverthe-
less, the LGrad−RAM matching values in the Davis ∩ sc-PDB pairs are essentially higher 
for the lower window lengths when compared to the sc-PDB pairs, which is in agreement 
with the fact that sc-PDB pairs are not associated only with kinases (representability).

Regarding the motifs, the LGrad−RAM matching (Eq. 8) was evaluated across different 
PSSM thresholds, window lengths, and data collections, where subsets of these datasets, 
specifically related to the filtering process of the motifs inside the entire binding region, 
were also considered (Fig.  5). The motifs - LGrad−RAM matching results demonstrate 
that the CNNs are identifying and extracting features from window-based motifs 
across different thresholds and window lengths. Similar to the binding sites, the highest 
LGrad−RAM matching increase occurs between a window length 0 and 1, and between 
a window length 1 and 2 (e.g., 11.28 - 20.26 - 26.52% for the PSSM threshold 5, and 
13.3 - 28.25 - 47.65% for the PSSM threshold 10 for the Davis ∩ sc-PDB pairs). The 
sc-PDB pairs (Fig. 5c, d ) present higher LGrad−RAM matching values, demonstrating that 
the CNNs are especially focusing on the conserved motifs positions, which reflects the 
absence of the protein domain similarity. Furthermore, higher PSSM thresholds ( ≥ 8) are 
associated with higher LGrad−RAM matching values across the different window lengths, 
suggesting that the CNNs are focusing on the highly conserved motifs, which are usually 
associated with important protein functions. Nevertheless, the filtering process of the 
motifs inside the entire binding region (Fig. 5b, d) resulted in overall lower LGrad−RAM 

Fig. 5  PSSM Motifs - LGrad−RAM matching results (Eq. 8) across different window lengths and PSSM thresholds, 
where weaker and deeper red colors are associated with lower and higher LGrad−RAM matching values, 
respectively. a Davis ∩ sc-PDB pairs; b Davis ∩ sc-PDB pairs (filtered*); c sc-PDB pairs; d sc-PDB pairs (filtered*). 
*Motifs inside the binding region filtered out
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matching values, showing that the CNNs are identifying and extracting features 
simultaneously from binding sites and motifs.

Figure 6 illustrates the LGrad−RAM maps for some of the protein sequences associated 
with the Davis ∩ sc-PDB and sc-PDB DTI pairs, in which the binding sites are annotated, 
i.e., known and available.

3D interaction space analysis (docking)

In order to further validate the reliability of the CNNs in the identification of important 
regions for binding, and the previous Binding sites - LGrad−RAM matching results, we 
have explored the 3D interaction space for DTI pairs without any binding information 
available, i.e., where the interacting protein residues are not annotated or available 
(contrarily to the pairs represented in Fig. 6 and the ones used for the Binding sites - 
LGrad−RAM matching results). On that account, we have selected two DTI pairs from 
the Davis kinase binding affinity testing set, specifically ABL1(E255K)-phosphorylated 
- SKI-606 and DDR1 - Foretinib, and explored the 3D interaction space using docking 
approaches, wherein the resulting 3D complexes were thoroughly assessed in order to 
make a fair comparison with the LGrad−RAM hits. Figures 7 and 8 depict the 3D receptor-
ligand complex, in which the potential binding sites ( ≤ 5 Å) and the information 
retrieved from the LGrad−RAM are annotated, and the 2D interaction diagram, where 
the matched binding - LGrad−RAM positions are annotated, for the ABL1(E255K)-
phosphorylated receptor and DDR1 receptor, respectively.

Consistent with the previous findings related to the LGrad−RAM matching results, 
Figs. 7a and 8a show that the CNNs are not aimlessly identifying regions to extract 
features from when predicting binding affinity, especially considering that there are 
LGrad−RAM hits matched with the potential binding sites (also represented in Figs. 7b 

Fig. 6  LGrad−RAM maps for some of the protein sequences of the Davis ∩ sc-PDB pairs and sc-PDB pairs, 
where the binding sites are represented by the red and blue circles, respectively. The height of the vertical 
lines corresponds to importance (weight) of feature extracted from the corresponding position (amino 
acid).*NP:nonphosphorylated
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and 8b ) and others hits near the neighborhood of these interaction spots. Regarding 
the LGrad−RAM hits close to the main binding pocket and also those not in the vicinity 
of the binding pocket, their spacial positions suggest they bear relation to conserved 
regions or other potential interaction pockets/subpockets, e.g., some of these hits 
are near α-helices, which are usually important for the structure and function of the 
protein, and for certain interactions given their polarity. In particular, for the case of 
the DDR1 kinase, some of these LGrad−RAM hits were found to be matched or nearly 
matched with certain experimental validated critical interacting residues.

See Additional file 1: Results Section 3.1.1.1 for more details regarding the docking 
process and analysis of the resulting 3D complexes.

Fig. 7  SKI-606 in complex with ABL1(E255K)-phosphorylated. a Annotated 3D complex obtained from 
docking, where the potential binding sites ( ≤ 5 Å), the LGrad−RAM hits, and the matched binding - LGrad−RAM 
positions are represented by the green, blue and red colors, respectively. b 2D Interaction Diagram, in which 
the matched binding - LGrad−RAM hits are shown delimited by red circles

Fig. 8  Foretinib in complex with DDR1. a Annotated 3D complex obtained from docking, where the 
potential binding sites ( ≤ 5 Å), the LGrad−RAM hits, and the matched binding - LGrad−RAM positions are 
represented by the green, blue and red colors, respectively. b 2D Interaction Diagram, in which the matched 
binding - LGrad−RAM hits are shown delimited by red circles
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Robustness of the deep representations

In addition to validate the reliability of the CNNs in the identification of important 
regions for binding, it is critical to understand the robustness (significance) of the 
deep representations. On that account, we explored the feature relevance correla-
tion between the positive-valued features in the input domain and the ones extracted 
from the window-based binding sites and motifs, respectively. Figure 9 illustrates the 
LGrad−RAM Feature Relevance (Eq. 9) in terms of a density map for the binding sites 
across the different feature relevance thresholds and window length values for the 
Davis ∩ sc-PDB and sc-PDB pairs.

The results demonstrate that at every feature importance threshold and window 
length value, the Binding sites - LGrad−RAM feature relevance values are superior than 
the corresponding threshold, i.e., the positive-valued features extracted from the win-
dow-based binding pockets are in the range of those with the highest influence. In 
particular, Fig.  9a shows that at every feature significance threshold, the LGrad−RAM 
feature relevance value is roughly 10% higher than the corresponding threshold. 
Regarding the window length, there is no significant difference across the different 
thresholds, corroborating the Binding sites - LGrad−RAM matching results, where 
CNNs were shown to extract information within the closer regions to the binding 
sites. Overall, CNNs are not aimlessly identifying and extracting features from each 
window-based binding pocket, but essentially assigning significance to these regions 
when predicting binding affinity.

The motifs - LGrad−RAM feature relevance (Eq.  9) was evaluated across different 
PSSM thresholds, feature significance thresholds, window lengths and data 
collections, including the subsets related to the filtering process of the motifs inside 
the entire binding region. However, since the window length did not represent any 
significant difference in the results, we considered the mean value across the different 
window lengths (Fig. 10). The results demonstrate that the CNNs are also assigning 
significance to the conserved motifs, although inferior than the one given to the 
window-based binding pockets, considering that the LGrad−RAM feature relevance 
is essentially lower in filtered pairs and even below the corresponding feature 
significance threshold values in some cases (illustrated when comparing Fig. 10a–d). 

Fig. 9  Binding sites - LGrad−RAM feature relevance (Eq. 9) results across different feature relevance thresholds 
and window lengths, where weaker and deeper red colors are associated with lower and higher LGrad−RAM 
feature relevance values, respectively. a Davis ∩ sc-PDB pairs; b sc-PDB pairs
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Consistent with the previous findings, higher LGrad−RAM feature relevance values are 
essentially associated with higher PSSM thresholds ( ≥ 8).

Conclusion
In this research study, we make use of an end-to-end deep learning architecture to 
predict drug–target binding affinity measured in Kd, wherein CNNs are exploited to 
automatically identify and extract discriminating deep representations from protein 
sequences and SMILES strings. The deep representations were found to be efficient and 
discriminating in their capacity to describe DTIs and distinguish them based on their 
binding affinity values (interaction strength rank order). Furthermore, the CNN-FCNN 
model yielded better results when compared to state-of-the-art baselines, demonstrating 
its viability for practical use.

We provide explainability to the predictions by connecting the deep representations 
extracted from the CNNs to the input domain, exploring the reliability of CNNs in the 
identification of important sequential regions, specifically binding sites and motifs, when 
predicting binding affinity. The results demonstrated that the CNNs are identifying 
and extracting features simultaneously from window-based binding sites and motifs 
without any a priori information. CNNs were found to extract information essentially 

Fig. 10  PSSM Motifs - LGrad−RAM feature relevance (Eq. 9) results* across different PSSM thresholds and 
feature significance thresholds, where weaker and deeper red colors are associated with lower and higher 
LGrad−RAM matching values, respectively. a Davis ∩ sc-PDB pairs; b Davis ∩ sc-PDB pairs (filtered**); c sc-PDB 
pairs; d sc-PDB pairs (filtered**). * Each value corresponds to the mean value across the different window 
lengths. **Motifs inside the binding region filtered out
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within the closer regions to the exact binding or motif location, respectively, validating 
the effectiveness of these architectures in drug discovery. Additionally, we evaluated the 
significance of the deep representations extracted from these window-based relevant 
regions for the binding, where the results indicated that the features extracted are in the 
range of those with the highest positive influence, particularly in the case of the binding 
sites.

The major contribution of this study relies in an efficient end-to-end deep learning 
architecture to predict binding affinity beyond the confined space of proteins and ligands 
with determined 3D structure, in which explanations for the predictions are presented 
and explored.

Considering the polypharmacology associated with several active small compounds, 
wherein these drugs interfere with different disease pathways, as future work we will 
focus on extending this work to validate the identification of important components in 
the compounds space, which can lead to uncover new off-targets for existing drugs.
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