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Abstract 

Background:  Pan-omics, pan-cancer analysis has advanced our understanding of 
the molecular heterogeneity of cancer. However, such analyses have been limited in 
their ability to use information from multiple sources of data (e.g., omics platforms) and 
multiple sample sets (e.g., cancer types) to predict clinical outcomes. We address the 
issue of prediction across multiple high-dimensional sources of data and sample sets 
by using molecular patterns identified by BIDIFAC+, a method for integrative dimen-
sion reduction of bidimensionally-linked matrices, in a Bayesian hierarchical model. Our 
model performs variable selection through spike-and-slab priors that borrow informa-
tion across clustered data. We use this model to predict overall patient survival from 
the Cancer Genome Atlas with data from 29 cancer types and 4 omics sources and use 
simulations to characterize the performance of the hierarchical spike-and-slab prior.

Results:  We found that molecular patterns shared across all or most cancers were 
largely not predictive of survival. However, our model selected patterns unique to sub-
sets of cancers that differentiate clinical tumor subtypes with markedly different sur-
vival outcomes. Some of these subtypes were previously established, such as subtypes 
of uterine corpus endometrial carcinoma, while others may be novel, such as subtypes 
within a set of kidney carcinomas. Through simulations, we found that the hierarchical 
spike-and-slab prior performs best in terms of variable selection accuracy and predic-
tive power when borrowing information is advantageous, but also offers competitive 
performance when it is not.

Conclusions:  We address the issue of prediction across multiple sources of data by 
using results from BIDIFAC+ in a Bayesian hierarchical model for overall patient survival. 
By incorporating spike-and-slab priors that borrow information across cancers, we 
identified molecular patterns that distinguish clinical tumor subtypes within a single 
cancer and within a group of cancers. We also corroborate the flexibility and perfor-
mance of using spike-and-slab priors as a Bayesian variable selection approach.

Keywords:  Bayesian hierarchical modeling, Bidimensionally-linked matrices, Pan-
omics, pan-cancer, Spike-and-slab priors, survival analysis, The Cancer Genome Atlas 
(TCGA )
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Background
Motivating application

Since its completion in 2018, the Cancer Genome Atlas (TCGA) database has become a 
cornerstone for studying the relationship between cancer molecular heterogeneity and 
clinical outcomes. TCGA contains data from multiple “omics” sources, including the 
genome, transcriptome, proteome, and epigenome, from over 10,000 patients across 33 
types of cancer [1], opening the door to pan-omics, pan-cancer research. Changes to 
genomic function that affect cancer development and behavior occur at multiple omics 
levels, motivating several pan-omics studies that have discovered vast molecular vari-
ation across multiple levels within a single cancer type [2–4]. Meanwhile, pan-cancer 
research has been motivated by discoveries of the same genomic changes affecting 
tumors from different tissues-of-origin [5]. These discoveries suggest the importance 
of considering multiple omics sources and multiple cancer types at once to holistically 
characterize cancer’s etiological landscape.

One approach to studying molecular heterogeneity across both omics sources and 
cancer types is BIDIFAC+, a method of simultaneous factorization and decomposi-
tion of variation across bidimensionally linked matrices [6]. BIDIFAC+ identifies latent 
factors, analogous to principal components, that may be shared across any number of 
omics platforms or sample sets. These components describe patterns of variability across 
these combinations of omics sources and patient groups. When applied to TCGA data, 
BIDIFAC+ revealed patterns of variability shared by mRNA, miRNA, methylation, and 
protein data driving heterogeneity across multiple cancers [6]. However, these results 
were solely exploratory, and did not consider prediction of important clinical endpoints. 
Our goal is to assess the prognostic value and clinical relevance of pan-omic patterns 
of molecular variability identified by BIDIFAC+. To do so, we sought to use a compre-
hensive model for overall survival that flexibly borrows information across the different 
types of cancer.

Components of our pan‑cancer, pan‑omics analysis

Our approach builds on two active areas of statistical methodology: prediction via inte-
grative dimension reduction (described in the “Prediction via bidimensional dimension 
reduction” section ) and structured Bayesian variable selection (described in the “Bayes-
ian hierarchical spike-and-slab survival model” section).

Prediction via bidimensional dimension reduction

Predictive modeling in the case of a single high-dimensional dataset often begins by first 
applying a method such as principal components analysis (PCA) to obtain a small set 
of latent variables (i.e., components) that explain variation in the data [7]. These com-
ponents can be used for predictive modeling using classical approaches [8]. However, 
PCA does not translate smoothly to the multi-source (e.g., multi-omics) context. In 
this context, one may use the results of multi-source integrative methods, like joint and 
individual variation explained (JIVE) [9], structural learning and integrative decompo-
sition (SLIDE) [10], or generalized integrative principal components analysis (GIPCA) 
[11]. These methods identify components that are shared across or specific to multiple 
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sources, which has been shown to improve power and interpretation for multi-omics 
predictive models over ad-hoc applications of PCA [12]. However, these approaches do 
not apply when there are multiple sources of covariates and multiple sample sets, as is 
the case in the pan-omics, pan-cancer setting. This article addresses the issue of pre-
diction across multiple sources of data and multiple sample sets by using components 
identified by BIDIFAC+ in a predictive model. BIDIFAC+ identifies components that 
may be shared across any number of sources (e.g., omics platforms) and any number 
of sample sets (e.g., cancer types). In particular, we use BIDIFAC+ components from 
bidimensional integration of multiple omics sources and multiple cancer types to model 
TCGA patients’ overall survival (OS).

Bayesian hierarchical spike‑and‑slab survival model

In order to model the relationship between patient OS and components from BIDI-
FAC+ dimension reduction, we consider a Bayesian hierarchical survival regression 
framework. Bayesian hierarchical regression has been used previously for pan-cancer 
survival modeling [13], and is attractive in this context because it facilitates borrowing 
of information across cancer types while allowing a different survival model for each 
cancer. This feature of our approach is motivated by the assumption that molecular pat-
terns may drive heterogeneity in more than one cancer. However, our model is also flex-
ible enough to allow the effect of these patterns to differ according to the cancer type. 
Accommodating a censored outcome is straightforward in this framework, which has 
been demonstrated in prior work [13, 14].

Many genomic components have little relation to clinical outcomes, and so we pursued 
a sparse model that accommodates variable selection within the hierarchical framework. 
There is an extensive literature on Bayesian approaches to variable selection. Mitchell 
and Beauchamp [15], George and McCulloch [16], and Kuo and Mallick [17] are foun-
dational but differing perspectives on spike-and-slab variable selection. The spike-and-
slab approach is unique in providing an “included/excluded” interpretation for each 
predictor through the use of indicator variables that turn on and off each coefficient. 
In contrast, other Bayesian variable selection approaches adaptively shrink coefficients 
of uninformative predictors towards zero. Examples of such priors include the Bayesian 
lasso [18], the Bayesian elastic net [19], and the horseshoe prior [20].

These Bayesian variable selection methods have been used in hierarchical models 
of many forms. Yang et al. [21] propose using spike-and-slab priors to identify impor-
tant groups of covariates in nonparametric regression models and seemingly unre-
lated regressions models. Zhang et al. [22] propose a variable selection approach which 
identifies groups of covariates to include in the model and estimates lasso solutions for 
coefficients in selected groups. These methods operate on a single sample set where 
inducing sparsity at the group level on covariates is desired. In contrast, Suo et al. [23] 
and Mousavi et  al. [24] demonstrate using spike-and-slab priors for variable selection 
on a single covariate set shared by multiple sample sets for classification. Hierarchical 
variable selection has also been considered in Bayesian survival models, as is done in Lee 
et al. [25] and Lee et al. [26], which both present the use of spike-and-slab priors in pro-
portional hazards models. Maity et al. [14] consider the pan-cancer context and induce 
sparsity in a Bayesian model for survival using hierarchical horseshoe priors.
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To induce sparsity in our context across multiple cancer types (i.e., groups) we 
extend George and McCulloch [16]’s definition of a spike-and-slab prior in three 
ways: (a) we allow the possibility that a predictor is included for one sample group but 
not another, (b) we allow the slab distribution’s location and scale to be inferred hier-
archically based on data from groups for which the covariate is included, and (c) we 
impose a prior on the inclusion probabilities of each covariate to borrow information 
across groups. These modifications adapt the original formulation to borrow infor-
mation across groups without compromising the flexibility that covariate inclusion 
and coefficient estimation can differ between groups. This approach is attractive when 
groups offer agreeable information about shared covariates, and it is advantageous to 
borrow information to increase power. Our model accommodates a potentially-cen-
sored outcome, offering a translational approach that isolates predictors informative 
of survival.

Our context differs from Yang et al. (2020) [21] and Zhang et al. (2014) [22], who study 
variable selection on a shared covariate set for a single sample set. Our approach also dif-
fers from Mousavi et al. (2014) [24] and Suo et al. (2013) [23], who study variable selec-
tion for multiple sample sets but require the same predictors be included for all sample 
sets. The approach of Maity et al. (2020) [14] most closely resembles ours by borrowing 
strength across multiple sample sets to select informative predictors for patient survival 
but allowing for differences in the model for each sample set. However, we consider a 
spike-and-slab prior as opposed to a horseshoe prior to facilitate an “inclusion/exclu-
sion” interpretation for each predictor with accompanying posterior probabilities, which 
is useful in this context. Our work also differs in that we allow for the survival model for 
each cancer type to depend on a different set of predictors.

The rest of our article is organized as follows. In the “Methods” section we describe 
our methods in detail, including an introduction to the BIDIFAC+ method, the 
spike-and-slab prior, and our hierarchical extensions. In  the “Application to pan-
cancer, pan-omics data” section, we apply our Bayesian model to TCGA data to pre-
dict patient OS using patterns of variability identified by BIDIFAC+ and investigate 
the clinical relevance of the results. In  the “Simulation study” section, we present a 
simulation study evaluating the flexibility of the hierarchical spike-and-slab prior in 
the context of our data application. We provide a discussion of the results and sug-
gestions for future work in  the “Discussion” section and concluding thoughts in  the 
“Conclusion” section.

Methods
Here we describe our Bayesian hierarchical model with spike-and-slab priors. We first 
provide an overview of bidimensionally-linked data and the BIDIFAC+ method in the 
“BIDIFAC+ for bidimensionally-linked data” section. We then describe the classi-
cal spike and slab model in  the “Spike-and-slab priors” section. In  the “Hierarchical 
extensions” section, we describe how to extend the spike-and-slab prior to borrow 
information across grouped data. Then, we outline our full model used for the sur-
vival outcome in  “Extensions to survival data” section. We describe computation of 
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the posterior predictive log-likelihood for model assessment in the “Posterior predic-
tive likelihood validation” section.

BIDIFAC+ for bidimensionally‑linked data

Here we briefly introduce the BIDIFAC+ method. BIDIFAC+ [6] is an exploratory fac-
torization method for bidimensionally-linked data. Bidimensionally-linked data is a 
data structure consisting of several datasets linked by their rows (e.g., shared omics fea-
tures) and their columns (e.g., shared patient cohorts), as visualized in Fig. 1. BIDIFAC+ 
decomposes bidimensionally-linked data into a series of low-rank modules or matrices 
explaining structured variability shared either globally (across all datasets), across the 
row sets, across the column sets, or unique to each dataset. To illustrate the BIDIFAC+ 
decomposition, define the following concatenated matrix:

where each Xji represents a dataset from omics platform j, j = 1, . . . , J  and patient 
cohort i, i = 1, . . . , I . The BIDIFAC+ factorization is:

S
(k)
··  is a low-rank module which corresponds to structured variation that exists on a sub-

set of the J omics sources and I patient groups and E·· represents random noise. The sub-
matrix S(k)ji  of S(k)··  is non-zero if the kth low-rank module explains variability in omics 
source j and cancer i, or entirely 0 otherwise. The number of low-rank modules, K, is 
either set to K = (2I − 1)(2J − 1) to enumerate all combinations of omics platforms and 

(1)X·· =

X11 X12 . . . X1I

...
...

. . .
...

XJ1 XJ2 . . . XJI

(2)X·· =

K
�

k=1

S
(k)
·· + E·· where S

(k)
·· =









S
(k)
11 S

(k)
12 . . . S

(k)
1I

...
...

. . .
...

S
(k)
J1 S

(k)
J2 . . . S

(k)
JI









Fig. 1  Visualization of bidimensionally-linked data. Each rectangle represents a set of omics features for a 
given cancer type. Each row corresponds to an omics feature (e.g., protein, gene, etc.) and each column to a 
sample
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cohorts, or may be chosen such that the modules explain a pre-determined amount of 
variability in the data.

To derive predictors from these low-rank modules, we obtain the sample scores via the 
SVD of each S(k)··  . These sample scores reflect how the identified multi-omic patterns are 
expressed in samples across patient cohorts. To understand the biological relevance of 
these multi-omic patterns, we may investigate the loadings from this SVD, which map 
the latent patterns to the observed feature space. Investigating the loadings reveals the 
observed molecular features that are most relevant to the identified multi-omic pattern.

Spike‑and‑slab priors

We now introduce the spike-and-slab prior in its general form. Consider the ordinary 
linear model for an outcome yi given covariates {Xiℓ}

L
ℓ=1,

for subjects i = 1, . . . , I . The classical spike-and-slab model considered by George and 
McCulloch [16] imposes the following prior on the coefficients βℓ:

where τ 2ℓ  is chosen to be small and c2ℓ is chosen to be large. The indicator γℓ reflects from 
which distribution βℓ is generated: if γℓ = 1 , βℓ is generated from the slab, N(0, c2ℓτ

2
ℓ ) , and 

if γℓ = 0 , βℓ is generated from the spike, N(0, τ 2ℓ ) . Practically, γℓ indicates whether covari-
ate ℓ has a non-negligible contribution to the predictive model. The prior encourages 
sparsity via the spike, and shrinks coefficients under the slab towards zero. Uncertainty 
in model selection is easy to interpret via the posterior probabilities of each γℓ.

Hierarchical extensions

Now, assume the data are grouped or clustered, e.g., by genetic strain or cancer type. We 
index each group by i, i = 1, . . . , I and index subjects within each group by j, j = 1, . . . , ni 
where ni is the sample size for group i. Consider L covariates {X1,X2, . . . ,XL} , where a 
subset of the L covariates is available for each group. Let Si = {ℓ : Xℓ exists for group i} 
be the indices for covariates measured on group i. Let yij be the response for the jth sub-
ject in the ith group, j = 1, . . . , ni , i = 1, . . . , I . Specify a linear model for yij as follows:

where ǫij are iid random variables such that E(ǫij) = 0 and Var(ǫij) = σ 2 . This frame-
work not only allows for covariate sets to differ between groups, but also allows the 
effect of each predictor to vary by group, where the partial effect of predictor ℓ for group 
i is given by βiℓ . We allow for the possibility that a predictor may have no effect on group 
i’s outcome through the use of spike-and-slab variable selection. We extend George and 
McCulloch’s implementation of a spike-and-slab prior (4) by inferring the distribution 

(3)yi = β0 +

L
∑

ℓ=1

βℓXiℓ + ǫi

(4)
βℓ|γℓ ∼ (1− γℓ)N(0, τ 2ℓ )+ γℓN(0, c2ℓτ

2
ℓ )

γℓ|πℓ ∼ Bernoulli(πℓ)

(5)yij = βi0 +
∑

ℓ∈Si

βiℓXijℓ + ǫij
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of the slab hierarchically (with a possibly non-zero mean) while allowing for differen-
tial inclusion across groups. The hierarchical structure is also extended to the inclusion 
probabilities. We define our spike-and-slab prior as follows:

where ℓ = 1, . . . , L and z2 is chosen to be very small. Here, γiℓ is an inclusion indica-
tor that reflects whether or not the coefficient for covariate ℓ comes from the spike 
or the slab distribution for group i. If γiℓ = 1 , then βiℓ is generated from the slab, 
Normal(β̃ℓ, �

2
ℓ) , and if γiℓ = 0 then βiℓ is generated from the spike, Normal

(

0, z2
)

 . Data 
from clusters for which covariate ℓ is generated from the slab are used to infer the mean 
β̃ℓ and variance �2ℓ of the slab distribution. This may increase our power to infer covari-
ate ℓ ’s effect if the groups provide concordant information. We apply a Beta prior to the 
inclusion probability πℓ for covariate ℓ , cementing a fully Bayesian framework. A unique 
inclusion probability for each predictor induces correlation between selected predictors 
across the I groups. Consequently, inference on πℓ reflects the proportion of groups for 
which covariate ℓ has predictive power.

Extensions to survival data

We now outline our full hierarchical spike-and-slab survival model with the likelihood 
and hyperparameters we use in our data application and simulations. Let yij be the sur-
vival time, which may or may not be observed due to censoring, for the jth subject in 
the ith group, j = 1, . . . , ni , i = 1, . . . , I . Let Si = {ℓ : Xℓ exists for group i} be the set of 
covariate indices available for group i. It is possible that group i and group i′ where i  = i′ 
do not share all of the same covariates. Further, define

where ycij is the censor time for the jth subject in the ith cancer type. Then, our hierarchi-
cal spike-and-slab model is

(6)

βiℓ|β̃ℓ, �
2
ℓ , γiℓ ∼ (1− γiℓ)Normal

(

0, z2
)

+ γiℓNormal(β̃ℓ, �
2
ℓ)

β̃ℓ ∼ Normal(0, τ 2)

�
2
ℓ ∼ Inverse-Gamma(α1,α2)

γiℓ|πℓ ∼ Bernoulli(πℓ)

πℓ ∼ Beta(1, 1)

(7)y∗ij =

{

yij if subject is not censored
ycij if subject is censored
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where ℓ ∈ Si for the ith cancer type and j indexes the subject within the ith cancer type. 
We selected a log-normal likelihood because previous work demonstrated it outper-
forms other parametric models for TCGA pan-cancer survival [13, 14]. The priors for 
β̃0 , �20 , β̃ℓ , and �2ℓ were chosen to be sufficiently uninformative and to match the scale 
of the data, though our later data application results in the “Application to pan-cancer, 
pan-omics data” section appeared to be insensitive to the choice of hyperparameters in 
these priors. The spike variance was arbitrarily set at 1

10000 and results were not sensitive 
to this choice. We implement our model using an in-house Gibbs sampling algorithm, 
in which the unobserved outcomes yij are simulated from their full conditional distribu-
tion when the observation is censored ( y∗ij = ycij) . All full conditional distributions for the 
censored survival model used for our data application in the “Application to pan-cancer, 
pan-omics data” section are provided in Additional file 1: Appendix A .

Posterior predictive likelihood validation

We assess our hierarchical spike-and-slab approach and related models via 5-fold cross vali-
dation of the log-posterior predictive likelihood. The log-posterior predictive likelihood is a 
measure of the predictive accuracy of the model. We use this measure in a cross validation 
framework as a holistic way to assess the predictive ability of a model fit to training data 
on an independent test set. The log-posterior predictive likelihood is defined as follows. 
For k = 1, . . . , 5 , consider the kth training-test set split, �Y = {�Y train

k , �Y test
k } . Let p(y|�0,X) 

be the log-normal probability density for survival time, given all model parameters �0 and 
covariates X. Define Xtrain

k  and Xtest
k  as the training and test set split of the covariates cor-

responding with the training and test set split of �Y = {�Y train
k , �Y test

k } for the kth fold. On each 
training fold, we fit the model and generated posterior samples for each parameter. For each 
posterior sample t after burn-in and thinning, we computed

where �t
o is a vector of all the tth iteration posterior samples for the parameters of the 

probability distribution of survival based on the kth fold of the training data. After com-
puting this quantity for each iteration, we computed an estimate of the out-of-sample 
posterior predictive likelihood:

(8)

log yij ∼ Normal



β0i +
�

ℓ∈Si

βiℓXijℓ, σ
2





β0i|β̃0, �
2
0 ∼ Normal(β̃0, �

2
0)

βiℓ|γiℓ, β̃ℓ, �
2
ℓ ∼ (1− γiℓ)Normal

�

0,
1

10000

�

+ γiℓNormal(β̃ℓ, �
2
ℓ)

γiℓ|πℓ ∼ Bernoulli(πℓ),πℓ ∼ Beta(1, 1)

β̃0 ∼ Normal(0, 102), �20 ∼ Inverse-Gamma(1, 1)

β̃ℓ ∼ Normal(0, 1), �2ℓ ∼ Inverse-Gamma(5, 1)

σ 2 ∼ Inverse-Gamma(0.01, 0.01)

(9)

P( �Y test
k |�t

o,X
test
k ) =

∏

(i, j)
uncensored

p(yij|�
t
o,Xij)

∏

(i, j)
censored

Pr(yij > ycij | �
t
o,Xij , y

c
ij)
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where T is the number of sampling iterations after burn-in and thinning. The log-pos-
terior likelihood measures how well a model fits the observed data, with a higher value 
indicating better fit. After running each model on the training fold and computing the 
log-posterior predictive likelihood on the corresponding test fold, we took the average of 
each models’ log-posterior likelihoods to determine which framework provided the best 
fit.

Results
Application to pan‑cancer, pan‑omics data

Here we describe the application of the hierarchical spike-and-slab model to TCGA 
data to characterize the clinical relevance of underlying genomic components. To do 
so, we model patient OS because it is clearly defined, clinically important, and availa-
ble for most subjects [27]. The model predictors are derived from applying BIDIFAC+ 
[6] to TCGA pan-omics, pan-cancer data as explained below. Additional methodolog-
ical details are provided in the “Methods” section and the Additional file

Our data was originally curated for use in Hoadley et al.’s [28] pan-cancer cluster-
ing analysis. These data consisted of 29 cancer types and 4 omics platforms. The can-
cer types are primarily defined by their tissue-of-origin, and we denote each type by 
its TCGA study abbreviation, e.g., BRCA for breast invasive carcinoma and ESCA 
for esophageal carcinoma. The omics platforms include (1) RNA-Seq data for 20531 
genes, (2) miRNA-Seq data for 743 miRNAs, (3) DNA methylation levels for 22601 
CpG sites, and (4) reverse-phase protein array data for 198 proteins. BIDIFAC+ 
decomposes the data into a sum of low-rank modules, each corresponding to struc-
tured variation that exists on a subset of the 4 omics platforms and the 29 cancers. 
Using this method, [6] identified 50 low-rank modules from which we derived predic-
tors for our model.

We obtained predictors from the BIDIFAC+ results by computing the singular 
value decomposition (SVD) of each low-rank module to identify underlying compo-
nents (analogous to principal components) that are specific to a subset of omics plat-
forms and cancer types. For each module’s SVD, we took the product of each singular 
value with its corresponding right singular vector. This product gives us the compo-
nent scores for each subject, which will serve as predictors in our survival model. In 
this context, the BIDIFAC+ components are assumed to be independent and roughly 
orthogonal. Since BIDIFAC+ can produce components that explain negligible varia-
tion in the data, we did not want to consider these as possible predictors in our pre-
dictive model. We would not expect these components to explain much variability in 
OS and they would lead to unnecessary noise. To ensure we consider predictors with 
the highest likelihood of explaining variation in survival, we developed selection cri-
teria that precedes our modeling step. Our inclusion criteria were as follows: 

1	 Include the first component from the SVD of each low-rank module. This compo-
nent explains the most variation within each module.

(10)
∫

P( �Y test|�0,X
test)P(�0| �Y

train,X train)d�0 ≈
1

T

T
∑

t=1

P( �Y test|�t ,X test)
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2	 Include any other components whose ratio of eigenvalue (squared singular value) to 
total variability in the original multi-source, multi-cancer data was greater than 0.01. 
This amounts to selecting predictors that explain at least 1% of the variation in the 
original pan-omic, pan-cancer data.

The 0.01 threshold could be adjusted in future studies but it yielded a manageable 
number of possible model predictors for our purposes. In sum, we considered 66 
components derived from the 50 modules as predictors of OS. We refer to each of 
these predictors by the module from which it was derived and the index of its cor-
responding right singular vector from the module’s SVD, e.g., predictor 5.1 is the first 
component from module 5.

To complete our model, we also included a model intercept for each cancer and 
patient age at the time of diagnosis as a predictor. In our previous work, we showed 
that age has a strong effect on overall survival in 27 of the 29 cancers considered here 
[13]. We standardized all predictors to have mean 0 and standard deviation 1 to facili-
tate comparisons of covariate effects on survival.

We obtained clinical data from the TCGA Clinical Data Resource (TCGA-CDR) [27]. 
Before running any analyses, we removed subjects who were missing both a survival 
time and a censoring time, removed subjects who had survival times that were negative 
or zero, and removed subjects missing a value for age. After filtering, we retained 6856 
subjects across 29 cancer types with data from the 4 omics platforms.

We first assessed which of the following model frameworks provided the best predic-
tive performance on the TCGA data factorized by BIDIFAC+. In parentheses, we give 
the name that each model is henceforth referred to. 

1	 A hierarchical spike-and-slab model, our proposed model, described in the “Exten-
sions to survival data” section  (“hierarchical”)

2	 A model with only a random intercept for each cancer type and no covariates (“null 
model”)

3	 A hierarchical model, with no spike-and-slab component and all covariates are 
included (“full model”)

4	 A hierarchical model with a spike-and-slab component and prior inclusion probabili-
ties fixed at 0.5 [“fixed (0.5)”]

5	 A hierarchical spike-and-slab model where a single inclusion probability, π , is shared 
for all covariates and all cancer types (as opposed to inferring an inclusion probabil-
ity, πℓ , for each covariate) with a uniform prior π ∼ Beta (1, 1) (“shared model”)

6	 A joint model in which the proposed hierarchical spike-and-slab model is applied to 
the 29 cancer types appended together row-wise. This model treats all cancer types 
as one cancer (“joint model”)

7	 The proposed hierarchical spike-and-slab model applied to each of the 29 cancer 
types separately. The model is fit to each cancer type assuming the cancers are inde-
pendent of one another (“separate model”)

8	 The hierarchical horseshoe accelerated failure time model (“hsaft”) proposed by [14]. 
We implemented this model using the PanCanVarSel R package provided by the 
authors [29].
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We compared how these models fit the data using 5-fold cross validation of the log-
posterior predictive likelihood, as described in  the “Posterior predictive likelihood 
validation” section. After running each model on the training fold and computing the 
log-posterior predictive likelihood on the corresponding test fold, we took the average of 
each models’ log-posterior likelihoods to determine which framework provided the best 
fit.

Our model selection results can be found in Table 1. While the hierarchical and shared 
model were quite close in fit and predictive accuracy for overall patient survitval, we 
proceeded with the proposed hierarchical model for the rest of our analysis.

We ran the hierarchical spike-and-slab model on the factorized TCGA data for 100000 
iterations with a 50000 iteration burn-in and 10-iteration thinning. Multiple runs of the 
model with different initial values gave similar results, suggesting that convergence was 
satisfactory. We display the variable selection results in Fig. 2 via a heatmap of the pos-
terior inclusion probabilities; an interactive version of this heatmap with links to addi-
tional plots displaying componeents with high posterior probabilities is available at 
www.​ericf​razer​lock.​com/​PanTC​GA_​Inclu​sion_​Heatm​ap.​pdf. The posterior inclusion 
probability for covariate ℓ in cancer i is the average of its inclusion indicators generated 
by our model after burn-in and thinning. Age was included for every cancer type with 
uniformly high probability, while the inclusion of pan-omic components were com-
paratively sparse. BIDIFAC+ predictors that capture molecular variation across all or 
most cancer types were mostly not included by our model. However, certain BIDIFAC+ 
predictors were identified as predictive of patient survival with high probability and are 
summarized in Table 2, ordered by descending posterior inclusion probability. In total, 
our hierarchical spike-and-slab model selected 24 BIDIFAC+ components across 17 
cancer types, based on a posterior inclusion probability above 0.5.

Note that the sign of the effects and credible intervals are not immediately interpreta-
ble because the identified components (given by singular vectors of an SVD) are uniquely 
defined up to their sign. However, we can interpret the scale of the effect. Motivated 
by these results, we chose to investigate more deeply components included for uterine 
corpus endometrial carcinoma (UCEC), brain lower grade glioma (LGG), kidney renal 
papillary cell carcinoma (KIRP), kidney renal clear cell carcinoma (KIRC), and kidney 
chromophobe (KICH) to understand the clinical relevance of the pan-omic components 
selected. In what follows, we describe our investigation into the clinical significance of 

Table 1  Model selection results using 5-fold cross validation of the log-posterior likelihood

Model type Mean log-
posterior 
likelihood

Hierarchical – 1019.023

Shared – 1019.968

Fixed (0.5) – 1036.793

Null model – 1048.536

Full model – 1059.670

hsaft – 1044.561

Separate model – 1040.328

Joint model – 1130.240

http://www.ericfrazerlock.com/PanTCGA_Inclusion_Heatmap.pdf
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these components. While the figures and discussion describe the marginal effects of 
components, bear in mind that because our model is multivariate the identification of 
a component’s predictive power for survival is relative to the information contained in 
other model predictors. We describe here our investigation into components 16.1 for 
UCEC, 7.2 for LGG, and 11.1 for KIRP and KIRC; we explore the inclusion of additional 
components for UCEC, LGG, and KICH in in the Additional file 1: Appendix B.

BIDIFAC+ component 16.1 was identified as predictive of survival by the model with 
near certainty (Table 2). We investigated if this component was associated with UCEC’s 
three histological subtypes: endometrioid, serous, and mixed serous and endometroid 
[30]. We examined this using histological labels provided in TCGA-CDR [27]. Based on 
the kernel density estimation (KDE) graph shown in Fig. 3a, the three UCEC histologi-
cal subtypes cluster distinctly along component 16.1. This suggests that this pattern of 
variation is primarily driven by distinctions between the three types of UCEC tumors. 
The Kaplan–Meier survival figure provided in Fig. 3b shows divergent survival outcomes 
for the three subtypes. [30] found that serous and serous-like tumors show extensive 
somatic copy number alterations (SCNAs), while endometrioid tumors do to a lesser 
degree, and observed that SCNAs roughly correlated with progression-free survival. 
While we modeled OS, this may be an underlying latent variable.

BIDIFAC+ component 7.2 was identified as predictive of survival in LGG subjects 
with a posterior probability of 0.92. We considered its association with the mutation 
status of genes IDH1 and IDH2 and deletion status in chromosome arms 1p and 19q 
(1p/19q codeletion) using data from [31]. Mutations in these genes define most cases 
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Fig. 2  Posterior inclusion probability heatmap for every cancer type and every predictor. The value printed 
on each box is the posterior probability of inclusion. Gray space indicates a predictor was not available for 
a particular cancer type. Brighter blue colors indicate higher probability of inclusion, while deeper blue 
indicators indicate lower probability of inclusion
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of LGG and contribute to an LGG subtype associated with better survival [31]. We saw 
subjects with wild-type IDH mutation clustered distinctly along component 7.2 (Fig. 4a), 
with Kaplan–Meier survival curves in Fig.  4b displaying divergent survival patterns 
among the three IDH mutation groups. This suggests that this pattern of variation is 
linked to IDH mutation patterns that correlate with patient survival.

Lastly, component 11.1 was associated with survival for KIRP and KIRC subjects. 
Using the classification scheme from TCGA’s pan-renal project, samples were docu-
mented as either KIRP or KIRC, with KIRP further subdivided into type I, type II, and 
CIMP. Any KIRP patients who did not fit into these categories were left unclassified. 
CIMP refers to a CpG island methylator phenotype [32] and type I and type II are char-
acterized by specific genetic mutations [33]. The CIMP subgroup is known to have the 
poorest survival of all renal cancers [32], which prompted us to examine if this pattern of 
variation captured this distinction using data from [32]. Figure 5a shows KIRP subjects 
classified as CIMP cluster separately from the other three subgroups. Kaplan–Meier 
survival curves emphasize the stark survival difference between CIMP and the remain-
ing KIRP and KIRC subjects. KIRC also shows poorer survival compared to KIRP types 

Table 2  Variable selection results from hierarchical spike-and-slab model. The “Component” column 
gives the module and component number that was selected, the “Cancer” column gives the cancer 
for which it was selected, “Mean Effect” gives the mean posterior draw for the coefficient of the 
selected covariate, “Posterior Inclusion Probability” gives the average of inclusion indicators, and 
“Credible Interval” gives 95% credible interval for coefficient effect

Component Cancer Mean effect Credible interval Posterior 
inclusion 
probability

1 16.1 UCEC – 0.50 (– 0.723, – 0.273) 1.00

2 11.1 KIRC 0.36 (– 0.004, 0.678) 0.92

3 7.2 LGG – 0.47 (– 0.773, 0.004) 0.92

4 14.1 KIRC – 0.30 (– 0.59, 0.005) 0.88

5 12.3 LGG – 0.29 (– 0.551, 0.008) 0.86

6 5.1 UCEC – 0.35 (– 0.62, 0.006) 0.86

7 34.1 HNSC – 0.33 (– 0.599, 0.007) 0.84

8 22.1 KIRP 0.77 (– 0.011, 1.435) 0.82

9 24.1 KIRP – 0.62 (– 1.218, 0.012) 0.79

10 37.1 ACC​ 0.54 (– 0.013, 1.228) 0.79

11 22.1 KICH 0.53 (– 0.012, 1.191) 0.78

12 11.1 KIRP 0.36 (– 0.016, 0.964) 0.77

13 1.1 SARC​ 0.30 (– 0.012, 0.662) 0.74

14 20.1 DLBC 0.54 (– 0.017, 1.628) 0.70

15 37.1 TGCT​ 0.49 (– 0.017, 1.436) 0.68

16 20.1 BLCA – 0.21 (– 0.516, 0.012) 0.68

17 11.1 LIHC 0.21 (– 0.079, 0.646) 0.66

18 1.1 LIHC 0.25 (– 0.014, 0.659) 0.63

19 1.1 SKCM 0.18 (– 0.014, 0.473) 0.63

20 20.1 CORE – 0.15 (– 0.434, 0.015) 0.57

21 11.1 CHOL 0.09 (– 0.34, 0.673) 0.54

22 22.1 KIRC 0.12 (– 0.015, 0.452) 0.51

23 39.1 THYM – 0.28 (– 1.052, 0.018) 0.51

24 2.1 PCPG 0.45 (– 0.016, 1.642) 0.50
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I, II, and unclassified subjects (Fig. 5b). While it seems that 11.1 is associated with KIRP 
clinical subtypes (e.g., CIMP), it is unclear to what characteristics of KIRC these predic-
tors are linked. The presence and clinical relevance of the CIMP phenotype has been 
well-studied for KIRP, and our analysis suggests that similar distinctions exist within 
KIRC that are also clinically relevant.

Fig. 3  Figure 3a displays a KDE plot for the selected component 16.1, which was identified as predictive 
of survival in UCEC subjects. Component 16.1 scores for subjects with serous UCEC cluster separately from 
subjects with endometrioid and mixed UCEC. Figure 3b shows the Kaplan–Meier survival curves for each of 
the histological subtypes, with the serous subtype showing the worst survival

Fig. 4  Figure 4a displays a KDE plot for the selected component 7.2, which was identified as predictive of 
survival in LGG patients. Estimated distributions are colored by IDH mutation and 1p/19q codeletion status. 
Figure 4b shows the Kaplan–Meier survival curves for each of the mutation subgroups, with the IDH wildtype 
mutation showing worst overall survival
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Simulation study

We now present a simulation study to compare different approaches to hierarchical vari-
able selection with the spike-and-slab prior. The primary goal of our simulation study 
was to characterize how modifications to the hierarchical variable selection component 
of our proposed model perform under different data-generating schemes, specifically 
in the context of our data application. We compared our proposed model under vari-
ous data-generating schemes to the seven other modeling frameworks considered in the 
“Application to pan-cancer, pan-omics data” section.

We designed the data-generating schemes to mimic our TCGA data application in the 
“Application to pan-cancer, pan-omics data” section by generating groups of the same 
sample size, with the same number of covariates for each group, and by randomly right-
censoring subjects. The degree of overlap across groups for each covariate matches that 
in our data application, which allows the possibility that some covariates are shared 
across all groups, some covariates are shared across subsets of groups, and some covari-
ates are present in only one group. Each model assumed a log-normal outcome and 
approximately 50% of subjects were censored.

We considered six data-generating scenarios: 

1	 Each covariate is included for all groups for which it is available with probability 0.5 
or excluded for all groups for which it is available with probability 0.5

2	 Each covariate is included for all groups for which it is available with probability 0.1 
or excluded for all groups for which it is available with probability 0.9

3	 Each covariate is included independently for each group with probability 0.5, i.e. no 
true hierarchical structure

4	 Each covariate is included independently for each group with probability 0.1
5	 All covariates are included in the model

Fig. 5  Figure 5a displays a KDE plot for component 11.1 within each of the KIRP subtypes, showing CIMP 
subjects clustering distinctly along component 11.1. This pattern of variation was identified as predictive of 
survival in KIRP as well as KIRC subjects. Figure 5b shows a Kaplan–Meier survival plot for all KIRP and KIRC 
subjects, showing KIRP subjects with the CIMP subtype have the poorest survival. Though KIRC does not 
currently have a known CIMP subtype, the clinical significance of this subtype is well-known for KIRP. Our 
analysis suggests a similar distinction may exist in KIRC that is also clinically relevant



Page 16 of 21Samorodnitsky et al. BMC Bioinformatics          (2022) 23:235 

6	 All covariates are excluded in the model

We compared the performance of the eight models using two metrics: the mean sum-
of-squared deviations (SSD) between the true inclusion indicator and the posterior 
inclusion estimated by each model and the log-posterior predictive likelihood defined 
in  the “Posterior predictive likelihood validation” section. The mean SSD provides a 
measure of selection accuracy while the log-posterior predictive likelihood provides a 
measure of predictive accuracy.

We now define the mean sum-of-squared deviations. Assume the true inclusion 
indicator for covariates ℓ available for group i to be γiℓ . Let γ̂iℓ be the posterior inclu-
sion probability for the covariates of group i estimated by the model; γ̂iℓ is computed 
by averaging the inclusion indicators from each model iteration after burn-in and 
thinning. The mean SSD for model k, k = 1, . . . , 8 is

where M =
∑29

i=1 |Si| is the total number of regression coefficients in the model. A 
lower mean SSD reflects better variable selection accuracy, while a higher mean SSD 
reflects poorer variable selection accuracy. We averaged mean SSDs across simulation 
replications. We do not compute the SSD metric for the hsaft model because the horse-
shoe prior does not inherently model a probability that a given predictor is included or 
excluded.

To compare all eight models based on their log-posterior predictive likelihoods, we 
generated a training data set under each data-generating condition. After fitting the 
model on this training data set, we computed the log-posterior likelihood on a test 
data set which is generated under the same condition and with the same true parame-
ter values as the training data set. We averaged the resulting log-posterior likelihoods 
across simulation replications.

We designed our simulation as follows. For 100 replications, 

1	 Run each of the eight considered models under the six data-generating conditions
2	 For each condition, generate the data accordingly and run each model for 10000 iter-

ations
3	 After a 5000 iteration burn-in and 10-iteration thinning, compute the mean SSD
4	 Generate a test data set under the same data-generating conditions. Using the poste-

riors samples generated based on the training data in step 3, compute the log-poste-
rior predictive likelihood

5	 At the end of the simulation, average across all simulation replications

We used 100 replications to ensure consistent results when the simulation study was 
repeated. The resulting mean SSDs and log-posterior likelihoods are shown in the 
Tables 3 and 4, respectively, where we bold the best performing model. In both tables, we 
use pairwise t-tests as a simple way to assess whether the observed differences in perfor-
mance across the simulation replications are statistically significant. If the performance 

(11)SSDk =
1

M

29
∑

i=1

∑

l∈Si

(γiℓ − γ̂iℓ)
2
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of two models were not significantly different under a particular data-generating condi-
tion, they were considered to have performed equally well.

The proposed hierarchical spike-and-slab model performs best under conditions (1) 
and (2) because each group affords concordant information about each predictor. In this 
case, it is beneficial to borrow strength across groups when estimating the prior inclu-
sion probability. Unlike conditions (1) and (2), conditions (3) through (6) are not specifi-
cally suited to the proposed model but competitive mean SSDs and posterior likelihoods 
demonstrate its competitive performance. Under condition (3), when the prior inclusion 
probability was 0.5 for all covariates, the fixed (0.5) model naturally performs best. The 
shared model performs well under both (3) and (4) because there was no added benefit 
to estimating the prior inclusion probability separately for each covariate. Conditions (5) 
and (6) were the most extreme, under which all or none of the covariates were included, 
respectively. Under (5) and (6), the full model (a hierarchical model without a spike-
and-slab component) and the null model perform best, respectively. Like (3) and (4), the 

Table 3  Mean sum of squared deviations for each model under each data-generating condition. 
Row names correspond to the pattern of covariate inclusion. Column names correspond to the 
models. Bolded values indicate the best performing model based on a pairwise t-test. If multiple 
values are bolded, then model performances were not significantly different at 0.01 level

Bold values indicate the best performing model for each scenario, and multiple values are bolded if they are not 
significantly different from the best model at the 0.01 level

Hierarchical Fixed (0.5) Full model Shared Null model Joint Separate

All In (Prob = 0.5) 0.0307 0.1124 0.4927 0.1507 0.5073 0.0644 0.0975

All In (Prob = 0.1) 0.0251 0.1204 0.8990 0.0411 0.1010 0.0314 0.0796

Indep. In (Prob = 0.5) 0.0915 0.0854 0.5000 0.0854 0.5000 0.4002 0.0977

Indep. In (Prob = 0.1) 0.0366 0.0813 0.8987 0.0269 0.1013 0.2424 0.0625

All In 0.0529 0.1304 0.0000 0.0016 1.0000 0.0981 0.1431

None In 0.0162 0.1103 1.0000 0.0002 0.0000 0.0211 0.0637

Table 4  Mean log-posterior predictive likelihood for each model under each data-generated 
condition. Row names correspond to the pattern of covariate inclusion. Column names correspond 
to the models. Bolded values indicate the best performing model based on a pairwise t-test. If 
multiple values are bolded, then model performances were not significantly different at 0.01 level

Bold values indicate the best performing model for each scenario, and multiple values are bolded if they are not 
significantly different from the best model at the 0.01 level

Hierarchical Fixed 
(0.5)

Full 
model

Shared Null 
model

Joint Separate Hsaft

All In (Prob 
= 0.5)

– 7687.97 – 7771.80 – 7883.81 – 7783.47 – 11662.95 – 10675.67 – 7819.95 – 7893.56

All In (Prob 
= 0.1)

– 8221.97 – 8310.11 – 8520.15 – 8229.85 – 9729.56 – 9869.96 – 8336.16 – 8359.26

Indep. In 
(Prob = 
0.5)

– 7755.32 – 7751.48 – 7951.62 – 7749.98 – 11701.51 – 11287.71 – 7815.04 – 7908.40

Indep. In 
(Prob = 
0.1)

– 7360.53 – 7421.77 – 7723.09 – 7349.98 – 9580.55 – 10358.29 – 7447.81 – 7488.49

All In – 307.15 – 8359.16 – 8291.82 – 8292.16 – 12863.43 – 11096.83 – 8436.40 – 8409.30

None In – 7827.13 – 7918.48 – 8173.49 – 7804.41 – 7800.81 – 9504.38 – 7935.25 – 7921.88
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shared model is competitive because there was no added advantage to estimating a prior 
inclusion probability for each covariate; however, our proposed model remained com-
parable in selection and prediction accuracy. Under conditions (1), (2), (5), and (6), the 
joint model performs variable selection comparably well because the groups do not dif-
fer in their inclusion patterns; however, its predictive performance across all conditions 
is starkly poorer. The hsaft model offers relatively competitive predictive performance 
under all conditions, despite the generative model not matching its assumptions.

This simulation study demonstrates that the hierarchical spike-and-slab prior 
described in  the “Methods” section is competitive in its ability to correctly identify 
which covariates to include under the data-generating scenarios considered here. While 
it offers flexibility to estimate different inclusion probabilities for each covariate and 
pool information across groups, it can also perform well when borrowing strength is not 
advantageous. Under each condition, the proposed model fit the test data well, exhibit-
ing its strength in identifying a model with predictive power. While it may not be the 
optimal model under each condition, its performance was consistent with models that 
were tailored to perform well, making it a flexible option for an array of underlying data-
generating mechanisms.

Discussion
In this article, we address prediction across multiple sources of data and multiple sam-
ples sets by using molecular patterns of variability identified by BIDIFAC+ in a Bayes-
ian hierarchical model. Our model uses spike-and-slab priors that borrow information 
across groups in determining the model’s sparsity structure. This spike-and-slab frame-
work has the advantage of increasing power to detect covariate inclusion and covariate 
effect while being flexible enough to allow each group to have a different covariate set. It 
also induces correlation under the posterior between selected predictors. An additional 
perk of this prior is the natural “inclusion/exclusion” interpretation that other shrinkage 
methods, like the horseshoe prior [20] or the Bayesian lasso [18], lack.

We apply this model to TCGA data where we use BIDIFAC+ components from the inte-
gration of pan-omics, pan-cancer data as predictors for overall patient survival. Predictive 
modeling using these data expands upon the exploratory work of [6] and contributes to 
the body of research in prediction using multi-source, multi-sample set data. Factorizing 
the pan-omic, pan-cancer data prior to predictive modeling is useful because the original 
genomic data is very high dimensional which presents issues of multicollinearity for mod-
eling. Our model gave sparse results regarding selected predictors that explain variabil-
ity across a large number of cancers. However, it did identify several molecular patterns 
within smaller subsets of cancer types that are strongly informative of survival, including 
clinically relevant molecular distinctions that have been previously established (e.g., sub-
types within UCEC and LGG) and similar effects across cancer types that warrant fur-
ther investigation (e.g., for the kidney cancers). In our context, we assumed BIDIFAC+ 
components were independent and orthogonal; however, this approach could be extended 
to incorporate correlation in the components if a correlation structure is known a priori. 
Other worthwhile future directions include considering different parametric assump-
tions for the survival model and relaxing the assumption that the error variance is shared 
across groups. Additionally one could consider non-linear models and generalized additive 
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models in this context. Including other clinical covariates, like stage and grade, might elu-
cidate the effect of BIDIFAC+ predictors on overall survival; however, stage and grade are 
not uniformly defined over different cancer types, which presents a challenge for their use 
in pan-cancer clinical modeling. Alternatively, one may consider other clinical variables as 
the response, like progression-free survival, but the availability of such data is not as wide-
spread for the TCGA cohort [27]. Patterns of variation identified by BIDIFAC+ on other 
omics sources, such as copy number variation, could also be considered as predictors.

We also present results from a simulation study where we evaluate the performance 
of modifications to the variable selection component in our proposed Bayesian model 
in our data application context. The goal of this study was to characterize the flexibil-
ity of our hierarchical spike-and-slab prior in fitting a diverse array of data-generating 
schemes that mimic our application’s group structure. Our simulation study showed 
that this prior was competitive under all six data-generating conditions considered. This 
study could be expanded to compare the proposed model to other survival models, such 
as the proportional hazards model or models assuming different parametric survival dis-
tributions. Incorporating other Bayesian variable selection methods, like the horseshoe 
prior [20] and the Bayesian lasso [18], into these models would also be worthwhile for 
comparison.

For our TCGA application, we fit our model more than once from random starting val-
ues and observed consistent results across these randomly-initialized chains, suggesting 
that the sampler converges and appropriately covers models with high posterior proba-
bility. However, for other scenarios a potential drawback of the spike-and-slab approach 
is that in the presence of many predictors, the posterior sampling algorithm may not 
cover all possible models. Another potential drawback of our approach is that it does not 
explicitly incorporate biological relationships between the omics features that are known 
a priori, and the associations captured are not necessarily causal. In general, more work 
can be devoted to devising variable selection methods that borrow information across 
grouped data. It would be valuable to evaluate and compare the performance of these 
extensions, in addition to the spike-and-slab model we discuss here, to characterize their 
relative advantages and disadvantages in a hierarchical setting.

Conclusion
We expand upon the exploratory results of bidimensional integration of multiple 
sources of data and multiple sample sets by using BIDIFAC+ components in a Bayes-
ian hierarchical survival model with spike-and-slab priors. Our results show that 
molecular patterns of variability identified by BIDIFAC+ were predictive of survival 
in subsets of cancers available in TCGA and may offer insight into novel clinical sub-
types. We also show that the spike-and-slab prior is a suitable option for Bayesian 
variable selection on grouped data in several different data-generating scenarios.

Abbreviations
BIDIFAC	� Bidimensional integrative factorization
TCGA​	� The Cancer Genome Atlas
mRNA	� Messenger ribonucleic acid
miRNA	� Micro ribonucleic acid
PCA	� Principal components analysis
JIVE	� Joint and individual variance explained



Page 20 of 21Samorodnitsky et al. BMC Bioinformatics          (2022) 23:235 

SLIDE	� Structural learning and integrative decomposition
GIPCA	� Generalized integrative principal components analysis
OS	� Overall survival
BRCA​	� Breast cancer invasive carcinoma
ESCA	� Esophageal carcinoma
DNA	� Deoxyribonucleic acid
SVD	� Singular value decomposition
TCGA-CDR	� TCGA Clinical Data Resource
hsaft	� Horseshoe shrinkage accelerated failure time
UCEC	� Uterine corpus endometrial carcinoma
LGG	� Brain lower grade glioma
KIRP	� Kidney renal papillary cell carcinoma
KIRC	� Kidney renal clear cell carcinoma
KICH	� Kidney chromophobe
SSD	� Sum of squared deviations
CpG	� Cytosine-phosphate-guanine

CIMP	� CpG island methylator phenotypeSupplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04770-3.

Additional file

Additional file 1. This supplementary document provides additional details on the Gibbs sampling algorithm for 
posterior computation, further details on the TCGA data application, and an additional simulation study to validate 
the model and sampling algorithm.

Acknowledgements
Not applicable.

Author contributions
SS ran all analyses and prepared the manuscript. KAH provided insightful perspective on the TCGA data and results. EFL 
conceived of the project idea and developed the model with SS. All read and edited the manuscript. All authors read 
and approved the final manuscript.

Funding
This work was supported by the National Institutes of Health (NIH) National Cancer Institute (NCI) grant R21CA231214, 
and National Institute of General Medical Sciences (NIGMS) grant R01GM130622.

Availability of data and materials
The code and data generated and analysed during the current study are available in the HierarchicalSS_PanCanOmics 
repository, https://​github.​com/​sarah​samor​odnit​sky/​Hiera​rchic​alSS_​PanCa​nPanO​mics/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
None declared.

Received: 19 July 2021   Accepted: 3 June 2022

References
	1.	 Hutter C, Zenklusen JC. The cancer genome atlas: creating lasting value beyond its data. Cell. 2018;173(2):283–5.
	2.	 TCGA Research Network et al. Comprehensive molecular portraits of human breast tumors. Nature. 2012; 

490(7418):61.
	3.	 TCGA Research Network, etal. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014; 

511(7511):543.
	4.	 Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al. Inte-

grated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in 
PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

https://doi.org/10.1186/s12859-022-04770-3
https://github.com/sarahsamorodnitsky/HierarchicalSS_PanCanPanOmics/


Page 21 of 21Samorodnitsky et al. BMC Bioinformatics          (2022) 23:235 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	5.	 Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network 
CGAR, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.

	6.	 Lock EF, Park JY, Hoadley KA. Bidimensional linked matrix factorization for pan-omics pan-cancer analysis. Ann Appl 
Stat. 2022;16(1):193–215. https://​doi.​org/​10.​1214/​21-​AOAS1​495.

	7.	 Massy WF. Principal components regression in exploratory statistical research. J Am Stat Assoc. 1965;60(309):234–56.
	8.	 Bair E, Hastie T, Paul D, Tibshirani R. Prediction by supervised principal components. J Am Stat Assoc. 

2006;101(473):119–37.
	9.	 Lock EF, Hoadley KA, Marron J, Nobel AB. Joint and individual variation explained (JIVE) for integrated analysis of 

multiple data types. Ann Appl Stat. 2013;7(1):523.
	10.	 Gaynanova I, Li G. Structural learning and integrative decomposition of multi-view data. Biometrics. 

2019;75(4):1121–32.
	11.	 Zhu H, Li G, Lock EF. Generalized integrative principal component analysis for multi-type data with block-wise miss-

ing structure. Biostatistics. 2020;21(2):302–18.
	12.	 Kaplan A, Lock EF. Prediction with dimension reduction of multiple molecular data sources for patient survival. 

Cancer Inf. 2017;16:1–11.
	13.	 Samorodnitsky S, Hoadley KA, Lock EF. A pan-cancer and polygenic Bayesian hierarchical model for the effect of 

somatic mutations on survival. Cancer Inf. 2020;19:1176935120907399.
	14.	 Maity AK, Bhattacharya A, Mallick BK, Baladandayuthapani V. Bayesian data integration and variable selection for 

pan-cancer survival prediction using protein expression data. Biometrics. 2020;76(1):316–25.
	15.	 Mitchell TJ, Beauchamp JJ. Bayesian variable selection in linear regression. J Am Stat Assoc. 1988;83(404):1023–32.
	16.	 George EI, McCulloch RE. Variable selection via gibbs sampling. J Am Stat Assoc. 1993;88(423):881–9.
	17.	 Kuo L, Mallick B. Variable selection for regression models. Sankhyā Indian J Stat Ser B. 1998;65–81.
	18.	 Park T, Casella G. The Bayesian lasso. J Am Stat Assoc. 2008;103(482):681–6.
	19.	 Li Q, Lin N, et al. The Bayesian elastic net. Bayesian Anal. 2010;5(1):151–70.
	20.	 Carvalho CM, Polson NG, Scott JG. The horseshoe estimator for sparse signals. Biometrika. 2010;97(2):465–80.
	21.	 Yang X, Narisetty NN, et al. Consistent group selection with Bayesian high dimensional modeling. Bayesian Anal. 

2020;15(3):909–35.
	22.	 Zhang L, Baladandayuthapani V, Mallick BK, Manyam GC, Thompson PA, Bondy ML, Do K-A. Bayesian hierarchical 

structured variable selection methods with application to molecular inversion probe studies in breast cancer. J R 
Stat Soc Ser C. 2014;63(4):595–620.

	23.	 Suo Y, Dao M, Tran T, Srinivas U, Monga V. Hierarchical sparse modeling using spike and slab priors. In: 2013 IEEE 
international conference on acoustics, speech and signal processing; 2013. pp. 3103–7. IEEE.

	24.	 Mousavi HS, Srinivas U, Monga V, Suo Y, Dao M, Tran TD. Multi-task image classification via collaborative, hierarchical 
spike-and-slab priors. In: 2014 IEEE international conference on image processing (ICIP); 2014. pp. 4236–40. IEEE.

	25.	 Lee KE, Mallick BK. Bayesian methods for variable selection in survival models with application to dna microarray 
data. Sankhyā Indian J Stat. 2004;756–778.

	26.	 Lee KE, Kim Y, Xu R. Bayesian variable selection under the proportional hazards mixed-effects model. Comput Stat 
Data Anal. 2014;75:53–65.

	27.	 Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, 
et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 
2018;173(2):400–16.

	28.	 Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, et al. 
Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 
2018;173(2):291–304.

	29.	 Arnab Kumar M, Anirban B, Bani K M, Veerabhadran B. Bayesian data integration and variable selection for pan-
cancer survival prediction using protein expression data. Biometrics (2019). R package version 0.0.3.

	30.	 Levine DA, Network CGAR, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 
2013;497(7447):67–73.

	31.	 TCGA Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. New Engl J 
Med. 2015;372(26):2481–98.

	32.	 Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, Bowlby R, Gibb EA, Akbani R, Beroukhim R, 
et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 
2018;23(1):313–26.

	33.	 TCGA Research Network. Comprehensive molecular characterization of papillary renal-cell carcinoma. New Engl J 
Med. 2016;374(2):135–45.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1214/21-AOAS1495

	A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Motivating application
	Components of our pan-cancer, pan-omics analysis
	Prediction via bidimensional dimension reduction
	Bayesian hierarchical spike-and-slab survival model


	Methods
	BIDIFAC+ for bidimensionally-linked data
	Spike-and-slab priors
	Hierarchical extensions
	Extensions to survival data
	Posterior predictive likelihood validation

	Results
	Application to pan-cancer, pan-omics data
	Simulation study

	Discussion
	Conclusion
	Acknowledgements
	References


