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Introduction
With the rapid advance of deep sequencing technology for cancer genomes, several 
large-scale projects, i.e. The Cancer Genome Atlas (TCGA) [1, 2] and International Can-
cer Genome Consortium (ICGC) [3, 4], were performed to provide opportunities for 
the comprehensive understanding of molecular mechanisms and pathogenesis underly-
ing cancer [5, 6]. One crucial challenge for cancer omics data sets is to get insight into 
the mechanism of tumor progression [7–9]. The studies have shown that the molecular 
mechanisms of most complex diseases were due to the dysfunction of relevant systems/
networks instead of the malfunction of single molecules [10–12]. Therefore, construct-
ing a network to analyze molecular mechanisms has become an effective method for 
studying complex diseases. The dynamic interactions and regulations between mol-
ecules [13–19] can detect the causal disease genes/module biomarkers at a single 
sample level. The edge biomarker’s method [20, 21] calculates the difference between 
normal network and disease network and discovers a set of differentially correlated gene 
pairs. Besides, network biomarkers [22] or subnetwork markers [14, 23] can accurately 
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characterize disease states. In actuality, these methods construct the individual-specific 
network based on the reference network from a group of reference samples. However, 
it is unclear how can a different reference sample set or the reference network affect 
the structure of single-sample network, or if or not a different reference sample set can 
result in a different network structure. In other words, these methods cannot distinguish 
the consistency of single-sample network with different reference sample sets.

The SSN method [24] estimates the perturbations of Pearson’s correlation coefficient 
(PCC) for each pair of genes in a single sample, and it can be used to construct the indi-
vidual-specific network for disease samples and control samples, which called the Dis-
ease network and Control network. Compared with the previously described SSN, we 
establish the SSDN by comparing and finding the difference between the Disease net-
work and Control network. A reference sample set is required to construct a reference 
network in SSDN, and the consistency of single-sample-Pearson correlation coefficients 
(s-PCC) needs to be considered in the SSDN. For this consideration, we analyzed the 
conditions of consistency of s-PCC based on different reference networks in this work, 
and proved that the s-PCC based on different reference networks are consistent in the 
following two cases: the number of reference samples is sufficiently large; the reference 
sample sets follow the same distribution. In other words, provided that if one of these 
two conditions is satisfied for the reference samples, we have the same SSDN structure, 
which is independent of the choice of the reference samples. This result provides a theo-
retical foundation for determining the reference network in the construction of SSDN.

In this work, we first gave the theoretical result on the conditions of the reference 
samples to construct a consistent SSDN, and then validated the consistency of s-PCC 
based on different reference networks both by simulated data and by three gastric cancer 
datasets from GEO datasets from the TCGA database. For clarifying the sample-spe-
cific characteristics of SSDN, we established a disease-specific sample network (DSSN), 
which is similar to SSDN but is based on non-paired sample data, to identify potential 
sample-specific driver genes to assess clinic prognosis information, which is strongly 
correlated with individual somatic mutation genes and validated by the enrichment 
analysis. The results of survival analysis for the potential sample-specific driver genes 
demonstrate that the networks with those genes can be used as effective module bio-
markers to predict the prognosis for patients.

Material and methods
Data processing

The gene expression profiles for gastric cancer were from the GEO database (http://​
www.​ncbi.​nlm.​nih.​gov/​geo/) including datasets GSE27342, GSE63089, and GSE33335. 
The three datasets contain 80 pairs, 45 pairs, and 25 pairs of RNA-Seq data from gastric 
cancer tissues and matched adjacent tumor-adjacent tissues from 150 cancer patients. 
The IDs of probe sets were mapped to the gene symbols. Probe sets without correspond-
ing gene symbols were not considered in this study. All profiles were normalized by 
the RMA (robust multi-array averaging) methods, and the probe sets were mapped to 
their corresponding gene symbols. The expression values of replicated probe sets were 
averaged to one gene. As a result, 17,325 genes were gotten for the following study. In 
addition, four tumor datasets, which were Breast invasive carcinoma (BRCA), Lung 
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adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), and Liver Hepatocel-
lular Carcinoma (LIHC), were gotten from the TCGA data portal (http://​cance​rgeno​me.​
nih.​gov). There were 1102 tumor and 113 tumor-adjacent samples in BRCA, 533 tumor 
and 59 tumor-adjacent samples in LUAD, 502 tumor and 49 tumor-adjacent samples in 
LUSC, 371 tumor and 50 tumor-adjacent samples in LIHC, and the clinic information 
of these samples were also downloaded from TCGA. Then, 24,991 mRNAs/genes were 
obtained for each sample in TCGA and the data of tumor-adjacent tissue was consid-
ered as the normal samples for further study. Finally, we obtained 50 tumor samples for 
BRCA from the ICGC database (International Cancer Genome Consortium, https://​
icgc.​org/) as a follow-up verification.

Functional enrichment for the individual specific network

The existing cancer genes were gathered from the Cancer Gene Census database [25] 
(CGC, https://​cancer.​sanger.​ac.​uk/​census/) and a hypergeometric test was used to calcu-
late the functional enrichment of genes in the SSDN. The formula of the hypergeometric 
test is:

where N is the number of genes of the gene expression profiles, K is the number of genes 
existing cancer-related genes in the CGC database, n is the number of genes in the SSDN 
of a single sample and i is the number of overlapped genes between K and n. P is the 
statistical significance of the hypergeometric test. If P < 0.05, then we regarded that the 
enrichment for the CGC database considered statistically significant. In addition, the 
enrichment analysis of genes in the SSDN was conducted using DAVID Bioinformatics 
Tool (version 6.8, https://​david.​ncifc​rf.​gov/​home.​jsp)​26 in the cancer pathway from the 
KEGG (Kyoto Encyclopedia of Genes and Genomes).

Survival analysis for the individual specific network

To confirm whether the genes from SSDN are related to disease, we used them as a 
network biomarker to observe the effect between gene expression and survival rate in 
samples. Here we defined the hub gene, which is a gene that is highly connected with 
others, or a gene with a high degree. First, we computed the top m highest degree genes 
for SSDN of all samples composing of the hub genes in one cancer. Second, for a single 
sample, if the top n highest degree genes of this sample included half of the hub genes, 
then the gene was chosen into high-risk group, on the contrary, it would be taken into 
low-risk group. Survival analysis was performed on the disease samples based on the 
hub genes. Furthermore, the log-rank test (with p < 0.05 considered significantly) in R/
Bioconductor [27] was used to evaluate the statistically significant the survival curves 
between the high and low-risk groups. An independent data from the ICGC database 
were used to validate our results.
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The theoretical foundation of SSN based on different reference networks

Assume that X = [x1, . . . , xn] and Y = [y1, . . . , yn] are two expression vectors for gene X 
and Y in reference samples (reference1) with length n, where xi is the expression of gene 
X for the ith (1 ≤ i ≤ n) sample in reference samples, and yj is the expression of gene 
Y for the jth 

(

1 ≤ j ≤ n
)

 sample in reference samples. Here, n can be considered as the 
number of the reference samples, xi and yj represent the expression values of two gene X 
and Y in reference samples. And the PCC for gene X and Y can be calculated as follows.

There were two new samples Sa with expression 
(

xa, ya
)

 and Sb with expression 
(

xb, yb
)

 
for gene X and Y. The two samples were added into reference samples to form new vec-
tor pairs 

[

(X , xa),
(

Y , ya
)]

 and 
[

(X , xb),
(

Y , yb
)]

 . Then the PCCs between vectors (X , xa) 
and 

(

Y , ya
)

 , between vectors (X , xb) and 
(

Y , yb
)

 with the length (n + 1) were calculated as 
Rna and Rnb . The differences of PCCs between before and after adding the new samples 
were �na = Rna − Rn and �nb = Rnb − Rn.

Then we have another two reference vectors X ′ =
[

x′1, x
′
2, . . . , x

′
m

]

 and 
Y ′ =

[

y′1, y
′
2, . . . , y

′
m

]

 with length m for another reference samples (reference2), where x′

i 
is the ith (1 ≤ i ≤ m) element of gene X ′ and y′j is the jth 

(

1 ≤ j ≤ m
)

 element of gene 
Y ′ in reference2. Here, m can be considered to be the number of the reference samples, 
x′i and y′j represent the expression levels of two molecules X ′ and Y ′ respectively. When 
the same two new samples Sa and Sb added to X ′ and Y ′ , the differences of PCC are 
�ma = Rma − Rm and �mb = Rmb − Rm.

Derived from our mathematical theory (Note S1), if given the relationship of �na 
and �nb , then the relationship of �ma and �mb got two conclusions: One, assuming 
�na > �nb based on reference1, if n,m → ∞ , we can get �ma > �mb based on refer-
ence2, vice versa. Another, if vector X and vector X ′ belong to one independent iden-
tically distributed random variables {Sn} , Y  and vector Y ′ belong to one independent 
identically distributed random variables {Wn} , and �na > �nb , then we got �ma > �mb . 
The details of mathematical explanations of the two conclusions for a single sample 
are given in Note S1. For convenience, if �na > �nb (or �na < �nb ) in reference1, and 
�ma > �mb (or �ma < �mb ) in reference2, that means, �na and �nb , �ma and �mb have 
the same relationship, we defined it as single-sample-Pearson correlation coefficients, 
which implies as s-PCC in the following paper.

Constructing an individual‑specific differential network

The sample-specific network for an individual patient is constructed based on the sta-
tistical perturbation analysis of this sample against a group of given control samples. So, 
we required expression profiles for a group of normal samples, which served as the refer-
ence/control samples. We construct a reference network by Pearson correlation coeffi-
cients (PCC) using the reference samples (Fig. 1A). We calculate the PCC of each pair of 
genes as an edge with or without a background [24]. Then, a disease sample k obtained 
from cancer tissues of a patient was added to the reference samples and construct a 

Rn =

n
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.
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Perturbed disease network by PCC (Fig. 1A). After that, a Disease network for disease 
sample k can be obtained by calculating the different edges between the Perturbed dis-
ease network and Reference network, and a Disease network is an SSN for the disease 
sample k in disease status (Fig. 1B). At the same time, we also add a control sample k, 
which was obtained from normal tissue of the same patient to the reference network 
to construct the perturbed control network (Fig.  1A) and Control network (Fig.  1B) 
through the same procedure. The Control network is an SSN from a control sample. The 
disease sample k was from the tumor tissue of patient k, and the control sample k was 
from the tumor-adjacent tissue of patient k. The difference between the Disease network 
and Control network is probably due to cancer-related genes. If the changes between 
two networks in terms of the network structure are obvious, the genes that caused the 
changes are highly possible to be cancer-related. On the contrary, if genes are insignifi-
cantly changing in the structure between two networks, these are likely not to be cancer-
related. Thus, this new network was called sample-specific differential network (SSDN) 
for sample k by obtaining the differences between the two networks (Fig. 1B), i.e. for an 
edge in the Disease network, if it is not in the Control network, then the edge was kept 
in final SSDN, and vice versa.

In this study, a protein–protein interaction network (PPIN) from the HPRD database 
(Human Protein Reference Database, http://​www.​hprd.​org/) was used as the background 
network to filter the potential false-positive edges from the correlation networks. If there 
is an edge in PPIN for a pair of genes, the PCC of the gene pair would be calculated for 
the Reference network, Perturbed disease network, and Perturbed normal network. If 
there is no connection in PPIN for a pair of genes, we ignored the calculation of PCC for 
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the gene pair. We used the background network to reduce the amount of calculation of 
the PCC and reduce the existence of false-positive gene pairs (Note S2).

Results
Numerical simulation of s‑PCC based on different reference networks

To verify our conclusion, a numerical simulation was done for a single sample correla-
tion. In the above paper, we have proved that PCC is consistent in two cases, and defined 
the single-sample-Pearson correlation coefficients as s-PCC. Firstly, two simulated sam-
ple sets were generated based on normal distributions from the different mean, variance, 
and sample size as two reference datasets, and the two reference datasets were called 
reference1 and reference2. Secondly, the s-PCC between two genes can be calculated 
based on the two reference datasets (reference1 and reference2), to obtain s-PCC1 and 
s-PCC2 in a simulated single sample. Assuming the gene-pair 

(

x, y
)

 and 
(

x′, y′
)

 in the sin-
gle sample, the correlations of the two gene-pairs based on reference1 are s-PCC1(x, y) 
and s-PCC1(x’, y’), the two gene-pairs based on reference2 are s-PCC2(x, y), and s-PCC2(x’, y’). 
If s-PCC1(x, y) > s-PCC1(x’, y’) and s-PCC2(x, y) > s-PCC2(x’, y’), or s-PCC1(x, y) < s-PCC1(x’, y’) and 
s-PCC2(x, y) < s-PCC2(x’, y’), means the tendency of the s-PCC for the two gene-pairs is con-
sistently based on the two reference datasets. We regarded the two gene-pairs as consist-
ent gene-pairs. Then the consistency of s-PCC for two reference datasets was defined as 
the percentage of consistent gene-pairs between the two reference datasets. Finally, we 
evaluate the consistency of s-PCC among different reference datasets.

The two reference datasets were respectively generated from the normal distribu-
tion with the mean value (μ = 1, 2, 3, 4) and the variance (δ = 1), and the sample size 
of the two reference datasets were the same and randomly obtained from a range. The 
consistency of s-PCC based on different sample sizes of reference dataset was shown 
in Fig. 2A–C (random value from range 100 to 1000, range 1000 to 10,000, and range 
10,000 to 100,000). If two reference datasets were generated from the same distribution 
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verify our conclusion. Two reference datasets ranging from 10,000 to 100,000
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(same mean and variance), the consistency of s-PCC would be higher than in other situ-
ations that the two reference datasets came from different distributions (different mean) 
(Fig. 2A–C). For example, the two reference datasets range from 100 to 1000, and are 
generated from the same normal distribution with same mean (μ = 1) and variance 
(δ = 1), the consistency of s-PCC is 95.64% (Fig. 2A). When the two reference datasets 
generated from different distributions with different mean (μ = 1 and μ = 2) and same 
variance (δ = 1), the consistency of s-PCC is 93.51% (Fig. 2A). When the two reference 
datasets generated from the distributions μ = 1 and μ = 3 and same variance (δ = 1), 
the consistency of s-PCC is 92.33% (Fig. 2A). When the two reference datasets gener-
ated from the distributions μ = 1 and μ = 4 and same variance (δ = 1), the consistency 
of s-PCC is 92.1% (Fig.  2A). The more different the distributions of the two reference 
datasets generate from, the lower consistency of s-PCC for the two reference datasets is. 
The same tendency was also shown in Fig. 2B, C. And with the increase of sample size 
of reference datasets, the consistency of s-PCC was also raised from range 100 to 1000, 
range 1000 to 10,000, and range 10,000 to 100,000 (Fig. 2A–C). If two reference datasets 
generated from the different distributions (Normal Distribution, Uniform Distribution, 
Poisson Distribution, Geometric Distribution), a similar tendency was also shown in 
Fig. 2D–F. For example, the two reference datasets range from 100 to 1000, when the ref-
erence datasets both generated from Normal Distributions, the consistency of s-PCC is 
95.58% (Fig. 2D). If one reference dataset generated from Normal Distribution, the other 
generated from Uniform Distribution, the consistency of s-PCC is 56.23% (Fig. 2D). If 
one reference dataset generated from Normal Distribution, the other generated from 
Poisson Distribution, the consistency of s-PCC is 10.23% (Fig. 2D). If one reference data-
sets generated from Normal Distribution, the other generated from Geometric Distribu-
tion, the consistency of s-PCC is 7.65% (Fig. 2D). The same tendency was also shown in 
Fig. 2E, F. If two reference datasets both generated from Normal Distributions, with the 
increase of sample size of reference datasets, the consistency of s-PCC was also raised 
from range 100 to 1000, range 1000 to 10,000, and range 10,000 to 100,000 (Fig. 3A). The 
results of numerical simulation showed that the consistency of s-PCC would reduce with 
the different distribution of the reference datasets, and raise with the increase of sample 
size of the reference datasets. It is also consistent with the theoretical analysis in the last 
section.

Real data validation for the consistency of s‑PCC in different reference sets

In addition to the simulated data, three tumor datasets (LUAD, LUSC, and LIHC) 
were obtained from TCGA (https://​www.​cancer.​gov/) database to validate the results. 
The control/normal samples (more than ten samples) were randomly selected from the 
three datasets to form three reference sample sets, and used to construct three refer-
ence networks. Each tumor sample in the three tumor datasets constructed Perturbed 
disease networks based on the three reference networks. The average consistency of 
s-PCC was calculated based on different reference networks, and the random selection 
from Perturbed disease networks for different gene pairs was repeated 105 times. We 
regarded that the normal samples from the same tissue follow the same distributions, so 
the normal samples from Lung adenocarcinoma (LUAD) and Lung squamous cell carci-
noma (LUSC) follow the same distribution, and Liver Hepatocellular Carcinoma (LIHC) 

https://www.cancer.gov/
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follows other distribution compare with LUAD and LUSC. The results showed that if we 
only used the LUAD dataset as reference sample sets to construct reference networks, 
the average consistency of s-PCC is 91.8%. If we only used the LUSC dataset as reference 
sample sets to construct reference networks, the average consistency of s-PCC is 92%. 
If we only used the LIHC dataset as reference sample sets to construct reference net-
works, the average consistency of s-PCC is 92.6%. If we used the reference sample sets 
from LUAD and LUSC, the average consistency is 90.4% (Fig. 3B). While changing the 
reference sample sets to LUAD and LIHC, the average consistency is changed to 61.61% 
(Fig. 3B). The average consistency is 60.66% when the reference sample sets were LUSC 
and LIHC (Fig. 3B). The results showed when the reference networks obey the same dis-
tribution, the consistency of s-PCC will be higher than the reference networks with a 
different distribution (Fig. 3B).

Here we also used three gastric cancer databases from the GEO database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/) as an example, these datasets are GSE33335, GSE63089, 

0

0.2

0.4

0.6

0.8

1

top-10 top-20 top-30 top-50 top-100

P
er

ce
nt

ag
e 

of
 s

ig
ni

fi
ca

nt
 s

am
pl

es
 in

 
C

G
C

 e
nr

ic
hm

en
t 

an
al

ys
is

 o
f B

R
C

A
 

ge
ne

s

Hub genes

Our method Previous method

0

0.2

0.4

0.6

0.8

1

LUSC,LIHC LUAD,LIHC LUAD,LUSC

C
on

si
st

en
cy

 o
f 
s-
P
C
C

ba
se

d 
on

 
di

ff
er

en
t 

 r
ef

er
en

ce
 n

et
w

or
ks

 

Reference networks types

LUAD LUSC LIHC

0

0.2

0.4

0.6

0.8

1

top-10 top-20 top-30 top-50 top-100

P
er

ce
nt

ag
e 

of
 s

ig
ni

fi
ca

nt
 s

am
pl

es
 in

 
K

E
G

G
 e

nr
ic

hm
en

t 
an

al
ys

is
 o

f 
B

R
C

A
 

ca
nc

er
  g

en
es

Hub genes

Our method Previous method

0

0.2

0.4

0.6

0.8

1

Ref 1 and Ref 2 Ref 1 and Ref 3 Ref 2 and Ref 3

C
on

si
st

en
cy

 o
f s
-P
C
C

ba
se

d 
on

 
di

ff
er

en
ct

 r
ef

er
en

ce
 n

et
w

or
ks

Datasets types

GSE27342 GSE33335 GSE63089

0

0.2

0.4

0.6

0.8

1

BRCA LUAD LUSC LIHCP
er

ce
nt

ag
e

of
 s

om
at

ic
 m

ut
at

io
n 

ge
ne

s 
to

 b
e 

dr
iv

er
 m

ut
at

io
n 

ge
ne

s

Cancer types

top-100 top-50 top-30 top-20 top-10

A

0.9

0.92

0.94

0.96

0.98

1

[100,1000] [1000,10000] [10000,100000]

C
on

si
st

en
cy

 o
f s
-P
C
C

ba
se

d 
on

 
di

ff
er

en
t r

ef
er

en
ce

 n
et

w
or

k 
ne

tw
or

ks

Range of reference network samples

Normal Uniform Poisson Geometric B

C D

E F

Fig. 3  Validating sample-individual differential networks and predicting driver genes in cancer. A Four 
distribution samples ranging from 100 to 1000, 1000 to 10,000 and 10,000 to 100,000. B Cross validation of 
three cancer. C Cross validation of three gastric cancer databases. D The proportion of significant samples 
in the enrichment analysis of top 100, 50, 30, 20 and 10 highest degree genes for BRCA DSSN in the 
KEGG pathway and compare with previous method (SSN). E The proportion of significant samples in the 
enrichment analysis of top 100, 50, 30, 20 and 10 highest degree genes for BRCA DSSN in the CGC database 
and compare with previous method (SSN). F The proportion of somatic mutation genes to be driver mutation 
genes in top 100, 50, 30, 20 and 10 highest degree genes for each DSSN

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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and GSE27342. We selected the control/normal samples of the three datasets as the ref-
erence samples to construct three reference networks, and each tumor sample was used 
to construct Perturbed disease networks based on the three reference networks. For 
convenience, we noted the reference network from GSE33335 as Ref1, from GSE63089 
as Ref2 and from GSE27342 as Ref3. The number of reference samples in GSE33335 was 
24, GSE63089 was 45, GSE27342 was 80. The average consistency of s-PCC was calcu-
lated based on different reference networks and the random selection from Perturbed 
disease networks for different gene pairs was repeated 105 times. The results were shown 
that if taken Ref1 and Ref2 as reference networks, constructed the Perturbed disease net-
works for GSE27342, the consistency of s-PCC was 69.34%. constructed the Perturbed 
disease networks for GSE 33,335, the consistency of s-PCC was 73.28%, constructed the 
Perturbed disease networks for GSE63089, the consistency of s-PCC was 67.18% (Table 1 
and Fig.  3C). When the Perturbed disease networks were constructed taken Ref1 and 
Ref3 as reference network, the consistency of the three datasets was similar to the con-
sistency based on Ref1 and Ref2 (Table 1 and Fig. 3C). And when the Perturbed disease 
networks were constructed taken Ref2 and Ref3 as reference network, the consistency 
would be rapidly increased by over 90% (Table 1 and Fig. 3C). It is an agreement with the 
theoretical derivation that the consistency of s-PCC would be raised with the increase 
number of reference samples.

DSSN reveal individual features by pathway and disease gene enrichment

For revealing the disease modules of non-paired tumor samples, a common normal net-
work was constructed by collecting the common edges of Control networks, the edges 
existed in more than 1/3 Control networks for a type of cancer. The common normal 
network was used as the Control network to deduce the patient-specific disease mod-
ules. A disease-specific sample network (DSSN) was established by identifying the dif-
ferential edges between the Disease network and the Control network (Fig. 1). That is, 
for an edge in the Disease network, if it is not in the control network, then the edge was 
kept in the final DSSN. The hub nodes of DSSN were the potential cause modules of this 
tumor sample, and then the top- 100, 50, 30, 20 and 10 hub genes with a high degree in 
DSSN were respectively selected as potential disease modules for every tumor sample in 
TCGA.

We chose the Breast invasive carcinoma (BRCA) and LIHC to draw the disease mod-
ules networks. Disease modules refelect diffrerent extent of aggregation in different 
networks. In BRCA reference network, we selected the top- 10 and 20 hub genes as 
potential disease modules, and calculated the PCC between these genes. The gene pairs 
with p-value less than 0.01 form the edges of the network (Fig. 4). In BRCA Control net-
work, the top- 10 disease modules cannot be aggregated, while are scattered by several 

Table 1  The comparison for the consistency of different reference samples

Dataset Ref1 and Ref2 Ref1 and Ref3 Ref2 and Ref3

GSE27342 69.34% 69.23% 90.71%

GSE33335 73.28% 71.80% 92.55%

GSE63089 67.18% 67.35% 90.20%
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modules (Fig. 5A). Because our modules are selected from Disease network hub genes, 
so it cannot be significantly aggregated in the Control network. In BRCA Disease net-
work, we selected three individual samples to view the network (Fig. 5B–D). The top- 10 
disease modules are significantly aggregated in the Disease network. The top 20- disease 
modules in Disease network are also shown in Additional file 9: Figure S1. In the same 
way, the top- 10 and 20 disease modules in LIHC are drawn in Additional files 10–12: 

Fig. 4  The potential disease modules in BRCA reference network. A The network modules among the 
top- 10 hub genes. B The network modules among the top- 20 hub genes

Fig. 5  The potential disease modules in BRCA Control network and Disease network. A The network 
modules among the top- 10 hub gene in Control network. B The network modules among the top- 10 hub 
gene in Disease network in sample BRCA_AAAK. C The network modules among the top- 10 hub gene in 
Disease network in sample BRCA_A0CZ. D The network modules among the top- 10 hub gene in Disease 
network in sample BRCA_A440
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Figure S2-S4. It also implies that hub genes exited in the form of modules in the Disease 
network.

The potential disease modules of each sample were enriched to the corresponding 
pathway in KEGG and enriched the disease genes in CGC database. The hypergeometric 
test was used to test the significant level of the enrichment analysis and the percent-
age of significant samples. The results showed that the top- 100, 50, 30, 20 and 10 hub 
genes of more than 95% samples in BRCA were significantly enriched to Pathways in 
cancer and Breast cancer pathway in KEGG (Fig. 3D, Table 2). All potential disease mod-
ules (top- 100, 50, 30,20 and 10 hub genes) were significantly enriched to tumor genes in 
CGC database (Fig. 3E, Table 3). There are similar results for the potential disease mod-
ules in LUAD, LUSC, and LIHC with BRCA (Additional file 13: Figure S5). For example, 
there are more than 95% LIHC samples to be significantly enriched to Pathways in can-
cer and Hepatocellular carcinoma pathway in KEGG and all samples to be significantly 
enriched to existing tumor genes in CGC by top-100, 50, 30, 20 and 10 genes of DSSN 
(Additional file 13: Figure S5C and F). For LUAD and LUSC, the potential disease mod-
ules of almost all tumor samples were significantly enriched corresponding Pathways in 
cancer, Non-small cell lung cancer pathway in KEGG and existing tumor genes in CGC 

Table 2  A comparison of the KEGG enrichment analyses between our method and the SSN method

BRCA​ Top-10 Top-20 Top-30 Top-50 Top-100

Our method 95.64% 99.64% 99.99% 100% 100%

SSN method 0.00% 0.18% 10.00% 4.63% 6.17%

LUAD top-10 top-20 top-30 top-50 top-100

Our method 96.81% 95.68% 99.81% 100% 100%

SSN method 0.00% 0.00% 0.38% 3.57% 15.57%

LUSC top-10 top-20 top-30 top-50 top-100

Our method 98.41% 97.21% 99.20% 100% 100%

SSN method 0.20% 0.00% 0.80% 4.38% 12.25%

LIHC top-10 top-20 top-30 top-50 top-100

Our method 100.00% 100% 100% 100% 100%

SSN method 0.00% 0.00% 0.54% 3.78% 7.55%

Table 3  A comparison of the CGC enrichment analyses between our method and the SSN method

BRCA​ top-10 top-20 top-30 top-50 top-100

Our method 99.82% 100.00% 100.00% 100.00% 100.00%

SSN method 23.96% 25.41% 34.03% 55.63% 80.03%

LUAD top-10 top-20 top-30 top-50 top-100

Our method 99.62% 100.00% 100.00% 100.00% 100.00%

SSN method 16.89% 22.14% 24.39% 50.09% 76.55%

LUSC top-10 top-20 top-30 top-50 top-100

Our method 100.00% 100.00% 100.00% 100.00% 100.00%

SSN method 7.37% 10.76% 12.95% 32.07% 69.52%

LIHC top-10 top-20 top-30 top-50 top-100

Our method 98.92% 99.73% 100.00% 100.00% 100.00%

SSN method 10.78% 10.51% 15.36% 30.19% 60.91%
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(Additional file 13: Figure S5A, B, D, and E). Compared with the SSN method [24], our 
method can obtain higher accuracy of significant samples in the enrichment analysis of 
disease pathways and cancer-related genes by the potential disease modules from DSSN.

Predicting individual driver mutation by DSSN

Somatic mutation genes of a tumor sample can provide individual-specific information 
for this sample [28] and can be used to verify the potential driver genes of the sample. 
There are 125 existing driver mutation genes to have been determined for cancer in ref-
erence [29]. As we have referred, a hub gene in SSDN is a crucial gene from normal 
to tumor state. If a hub gene of SSDN was mutated, the gene may impact more genes 
than the non-hub gene and would be the potential driver mutation gene for this sample. 
Based on such an assumption, DSSN was involved in the network change between nor-
mal and tumor, and the hub genes in DSSN are more likely to associate with disease. So, 
the probability/proportion, which a mutated gene is an existing driver mutation gene, 
was respectively calculated for the top-100, 50, 30, 20 and 10 hub genes of each DSSN in 
each tumor and the average probability of each tumor was shown in Fig. 3F. The results 
showed that the probability/proportion was monotonically increased from the top- 100 
to 10 hub genes of DSSN (Fig. 3F). As an example, if a gene in the top 100 hub genes of 
DSSN of a BRCA sample was mutated, the probability of this gene being a driver muta-
tion gene is 63.04% (Fig. 3F). If a gene was mutated in the top 10 hub genes of DSSN of 
a BRCA sample, the probability would rise to 88.96% (Fig. 3F). It means if a hub gene of 
DSSN is mutated, the gene is a high probability to be a driver mutation gene in BRCA. 
Similar results were shown in LUAD, LUSC, and LIHC (Fig.  3F). Therefore, the hub 
genes of DSSN are strongly related to the disease cause for one sample, and high-degree 
genes are more likely to be carcinogenic factors.

Prognosis analysis for tumor samples

The clinic follow-up information was collected for each sample in TCGA, and the sur-
vival times (unit is days) and vital status (alive or dead) were filtered out. The samples 
that missed survival times or vital status were ignored. For BRCA and LIHC, the rep-
etition hub genes were identified based on the top 10 hub genes of each DSSN, and the 
most frequent 10 repetition hub genes were used to survival analysis for tumor sam-
ples. We used the 10 repetition hub genes to divide tumor samples into two groups, one 
included the samples that there were at least 4 repetition hub genes to be in the top 10 
hub genes of this sample; another included the samples that had less than 4 repetition 
hub genes to be in the top 10 hub genes of this sample. The repetition hub genes can 
also be identified based on the top 20 hub genes of each DSSN, and the most frequent 20 
repetition hub genes were used to survival analysis for tumor samples. In the same way, 
the 20 repetition hub genes to divide tumor samples into two groups, one included the 
samples that there were at least 9 repetition hub genes to be in the top 20 hub genes of 
this sample; another included the samples that had less than 9 repetition hub genes to be 
in the top 20 hub genes of this sample. A log-rank test was employed to test the signifi-
cance of the survival time.

The most frequent 10 and 20 repetition hub genes can significantly distinguish the 
samples with different survival time. For BRCA, the most frequent 10 repetition hub 
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genes samples in the two groups (high and low risk) can be significantly distinguished 
with p-value 0.0037 of log-rank test (Fig. 6A); the most frequent 20 repetition hub genes 
samples in the two groups also can be significantly distinguished with p-value 0.0077 
of log-rank test (Fig.  6B). The p-value of the most frequent 10 and 20 repetition hub 
genes of LIHC samples for survival analysis are respectively 0.0005 and 0.014 (Fig. 6C, 
D). Including LUSC samples, the repetition hub genes can be used to prognosis analysis 
in BRCA, LUAD, and LIHC (Fig. 6, Additional file 14: Figure S6). An independent data-
set from ICGC database for BRCA was used to validate the effectiveness of the DSSN 
in survival analysis, and the significant results were shown in Fig. 7. The repetition hub 
genes can be considered as the potential biomarkers for prognosis of the tumors.

Conclusion
In this work, we proposed the SSDN method and overcame the shortcomings of the 
previous method. We compared the difference between the SSN in Disease and SSN in 
Control, constructed the SSDN and DSSN. And we verified the consistency of s-PCC 
based on different reference networks from both theoretical and practical. SSDN and 
DSSN can also be used to select disease modules (hub genes) to evaluate individual 
features. The enrichment analysis of KEGG pathway and CGC database indicated the 
disease modules play an important role in cancer-related function by using the TCGA 
datasets for various cancer. The results of survival analysis demonstrated these genes can 
be used independently as individual module biomarkers. We expect SSDN and DSSN 

Fig. 6  Survival curve for BRCA and LIHC. A Survival curve for BRCA survival analysis when using the most 
frequent 10 repetition hub genes to divide tumor samples into two groups. B Survival curve for BRCA survival 
analysis when using the most frequent 20 repetition hub genes to divide tumor samples into two groups. 
C Survival curve for LIHC survival analysis when using the most frequent 10 repetition hub genes to divide 
tumor samples into two groups. D Survival curve for LIHC survival analysis when using the most frequent 20 
repetition hub genes to divide tumor samples into two groups
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to generalize well to further studies, including application to pathological diagnosis and 
drug therapy for patient-specific cancer care.

Discussion
The SSDN method is an improvement version of SSN method. The SSN method uses 
the reference network, but it does not explain whether the choice of different reference 
networks will affect the construction of Disease/Control network. We used the math-
ematical explanations to prove that in two cases, one is the size of samples is sufficiently 
large, other is the samples come from the same distribution. We have proved that the 
PCC in these two cases are consistent. And verified that the different reference net-
works have no effect on the construction of the network by using the real cancer data. 
Another improvement is the SSN method have constructed the individual-specific net-
work for disease sample and is called the Disease network, the individual-specific net-
work for control sample is called the Control network. We compared the two networks, 
and found the difference between the Disease network and Control network. Because if 
we only rely on the PCC to judge the significance of a gene pair/edge, there will have a 
high false positive. Comparing the difference between the two networks, we can select 
the gene pairs that only exist in the Disease network, or select the gene pairs that only 
exist in the Control network. In this way, we can reduce the false positive gene pairs, find 
the real difference between the two networks and remove the disturbance. Moreover, 

Fig. 7  Examine the statistical significance of hub genes using BRCA test samples. A Survival curve for BRCA 
verification survival analysis when using the most frequent 10 repetition hub genes to divide tumor samples 
into two groups. B Survival curve for BRCA verification survival analysis when using the most frequent 20 
repetition hub genes to divide tumor samples into two groups. C Survival curve for BRCA verification survival 
analysis when using the most frequent 30 repetition hub genes to divide tumor samples into two groups. D 
Survival curve for BRCA verification survival analysis when using the most frequent 50 repetition hub genes 
to divide tumor samples into two groups
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by using the real cancer data, we verified the potential disease modules for individual 
sample in SSDN method were enriched to the corresponding pathway in KEGG and 
enriched to the disease genes in CGC database (Tables 2, 3).

Several limitations of the current study should be considered, based on the limitations, 
we construct two kinds of different networks, SSDN and DSSN. For constructing SSDN, 
a sample pair are necessary for every patient. It means that there must be a tumor and 
control sample from the same patient tissue, respectively, only then we can construct 
a Disease network and a Control network for each patient. While if the normal sam-
ples cannot correspond to tumor samples, the situation has changed slightly. We create 
a new network, common normal network, for which the edge includes more than 1/3 
Control networks’ edges for a same cancer. The common normal network was called the 
Control network, and the rest steps of constructing DSSN are the same as SSDN. For 
an edge in the Disease network, if it is not in the Control network, then the edge was 
kept in the DSSN. The DSSN is a disease-specific sample network because the common 
normal network is constructed based on the same cancer, the subsequent conclusions 
are also concluded on the same cancer. Therefore, SSDN is constructed by identifying 
the different edges between the SSN in disease and SSN in control, DSSN is constructed 
by identifying the different edges between the SSN in disease and common normal net-
work. Here, in order to construct SSDN, we used three gastric cancer datasets from the 
GEO database because the samples with the same cancer obey the same distribution. 
These three datasets have 25, 45, and 80 paired samples, which include tumor and con-
trol samples from the same patient tissue. Since paired samples are two samples from 
the same patient, we can construct a Disease network and a Control network for individ-
ual patient. However, by analyzing four cancer datasets from TCGA database, due to the 
normal samples that cannot correspond to tumor samples, we have to use DSSN to solve 
the problem. Although DSSN cannot completely consistent with our previous methods, 
it indeed the best way to solve the problem of missing data.

We used three gastric cancer datasets from the GEO database and these datasets 
are GSE33335, GSE63089, and GSE27342. For convenience, we noted the reference 
network from GSE33335 as Ref1, from GSE63089 as Ref2 and from GSE27342 as Ref3. 
We used the Ref2 and Ref3 as two reference networks. For example, we add a normal 
sample of GSE27342 in a reference network and obtain the s-PCC between each gene 
pair. If the relationship between a pair of genes is significant, this pair of genes can be 
linked to an edge in the Control network. In the same way, we add a disease sample 
of GSE27342 in reference networks and obtain a Disease network. Hence, there is a 
Disease network and a Control network for a individual sample. For the Disease net-
work and Control network, there are six ways to obtain SSDN. The first SSDN is con-
structed based on specific genes in Disease and Control networks, the second SSDN 
is constructed based on common genes in Disease and Control network, and the rest 
are constructed based on the specific genes in Control networks, the specific genes 
in Disease networks, the genes only in Control networks, and the genes only in Dis-
ease networks. We selected the most frequent 300, 100, 50, 30, 20 and 10 repetition 
hub genes, and calculated the percentage of common hub genes based on Ref1 Ref2, 
Ref3. For dataset GSE27342 and the most frequent 10 hub genes, the percentage of 
common hub genes in the first SSDN is 50%, the percentage of common hub genes 
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in the second SSDN is 54.77%. The results of other percentage hub genes were shown 
in Additional file 16: Table S1. According to our theory and the real data validation, 
when the sample size is sufficiently large or the distribution is the same, the consist-
ency of s-PCC will be very high. While the sample size of the above three gastric 
cancer datasets is just 25, 45, and 80, the sample size is too small to get a high consist-
ency. The SSDN established based on Ref2 and Ref3 with a relatively large sample size 
is already the best result at present. Furthermore, we hope to develop a method to 
construct SSDN independent of the sample number.

For the survival analysis, we also used other parameters (the number of top hub 
genes and the number of repetitions hub genes) to test the robustness of the DSSN. 
For BRCA, the most frequent 30 repetition hub genes samples in the two groups (high 
and low risk) can be significantly distinguished with p-value 0.013 of the log-rank test 
(Additional file 10: Figure S2A); the most frequent 50 repetition hub genes samples in 
the two groups also can be significantly distinguished with p-value 0.024 of the log-
rank test (Additional file  10: Figure S2A). The results showed that different param-
eters can obtain similar results for prognosis (Additional file 10: Figure S2).

Compared with the prior work [15], the previous work of Liu, X et  al. We took 
the normal samples of the same cancer as a whole, and calculate the correlation by 
Liu’s method, and took the disease samples of the same cancer as a whole, calculate 
the correlation by Liu’s method. Then we calculate the CGC enrichment and KEGG 
enrichment of the whole cancer. The results show that SSDN method is prior than the 
Liu’s method. We have proved, although the SSDN method is used for single sample 
difference analysis, it turns out if treat the cancer as a whole, the enrichment analysis 
results are still good (Additional file 17: Table S2, Additional file 18: Table S3).

And we compared with the SSN method and our method. For BRCA, we used the 
SSDN method, and selected the gene pairs that specific existing in the disease network, 
then identified the top 6 genes with the highest degree in these gene pairs. For one 
sample, we have constructed the SSN, and calculated the top 10 genes with the highest 
degree in SSN. If the top 10 genes have less than 2 genes of the top 6 genes, the sample 
will be regarded as the normal sample. Otherwise, the sample can be regarded as the dis-
ease sample. The percentage accuracy of the SSDN classification is 88.56%. On the other 
hand, we used the SSN method to classify the control sample and disease sample. We 
have selected the gene pairs that existing in the control network, and calculated the top 
6 genes with the highest degree in these gene pairs. Then we have constructed the SSN 
in control and SSN in disease, and calculated the top 10 genes with the highest degree 
in SSN. If the top 10 genes have less than 2 genes of the top 6 genes, the sample will be 
regarded as the control sample, otherwise it’s a disease sample. Finally, we have selected 
the gene pair that existing in the disease network, and calculated the top 6 genes with 
the highest degree in these gene pairs. Based on the top 6 genes, we classify again. As a 
result, for BRCA, the accuracy of SSN in control classification is 54.40%, the accuracy of 
SSN in disease classification is 85.27%. The accuracy of classification for the other three 
cancer are also shown in the Additional file 19: Table S4. The result shows that the SSDN 
method select is indeed the specific gene in the disease network, and is better than SSN 
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method. Because the SSN method can only reflect the information of a single individual, 
and our method can maximize the use of normal sample and disease sample.

As for survival analysis, we also compared with the SSN method. For BRCA and 
LIHC, the repetition hub genes were identified based on the top 10 hub genes of each 
DSSN, and the most frequent 10 repetition hub genes were used to survival analy-
sis for tumor samples. We calculated the top 6 genes with the highest degree in SSN 
in control, and used the 10 repetition hub genes to divide tumor samples into two 
groups, one included the samples that there were at least 2 repetition hub genes to be 
in the top 6 hub genes of this sample; another included the samples that had less than 
2 repetition hub genes to be in the top 10 hub genes of this sample. In the same way, 
we calculate the top 6 genes with the highest degree in SSN in disease, and repeat the 
same classification process above. The p-value in DSSN method is below 0.05 (Fig. 6), 
is better than SSN (Additional file 20: Table S5). It further illustrates that SSDN/DSSN 
method can find the difference between disease and control samples.
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Additional file 9. Figure S1. The network modules with the potential disease modules in BRCA Control network 
and Disease network. (A) The network modules among the top- 20 hub gene in Control network. (B) The network 
modules among the top- 20 hub gene in Disease network in sample BRCA_A0T6. (C) The network modules among 
the top- 20 hub gene in Disease network in sample BRCA_A4RY. (D) The network modules among the top- 20 hub 
gene in Disease network in sample BRCA_A1IX.

Additional file 10. Figure S2. The network modules with the potential disease modules in LIHC reference network. 
(A) The network modules among the top- 10 hub genes. (B) The network modules among the top- 20 hub genes.

Additional file 11. Figure S3. The network modules with the potential disease modules in LIHC Control network 
and Disease network. (A) The network modules among the top- 10 hub gene in Control network. (B) The network 
modules among the top- 10 hub gene in Disease network in sample LIHC_A9H1. (C) The network modules among 
the top- 10 hub gene in Disease network in sample LIHC _A69I. (D) The network modules among the top- 10 hub 
gene in Disease network in sample LIHC _AAC9.

Additional file 12. Figure S4. The network modules with the potential disease modules in LIHC Control network 
and Disease network. (A) The network modules among the top- 20 hub gene in Control network. (B) The network 
modules among the top- 20 hub gene in Disease network in sample LIHC_A110. (C) The network modules among 
the top- 20 hub gene in Disease network in sample LIHC _A520. (D) The network modules among the top- 20 hub 
gene in Disease network in sample LIHC _AA0V.

Additional file 13. Figure S5. The enrichment in KEGG pathway and CGC database compared with our method 
and SSN method. (A)The proportion of significant samples in the enrichment analysis of top- 100, 50, 30, 20 and 10 
highest degree genes for LUAD DSSN in the KEGG pathway and compare with the previous method. The x-axis is the 
hub genes and the y-axis is the percentage of significant samples in KEGG enrichment analysis. (B) The proportion of 
significant samples in the enrichment analysis of top- 100, 50, 30, 20 and 10 highest degree genes for LUSC DSSN in 
the KEGG pathway and compare with the previous method. The x-axis is the hub genes and the y-axis is the percent-
age of significant samples in KEGG enrichment analysis. (C) The proportion of significant samples in the enrichment 
analysis of top- 100, 50, 30, 20 and 10 highest degree genes for LIHC DSSN in the KEGG pathway and compare with 
the previous method. The x-axis is the hub genes and the y-axis is the percentage of significant samples in KEGG 
enrichment analysis. (D) The proportion of significant samples in the enrichment analysis of top- 100, 50, 30, 20 and 
10 highest degree genes for LUAD DSSN in the CGC database and compare with the previous method. The x-axis is 
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the hub genes of cancer and the y-axis is the percentage of significant samples in CGC enrichment analysis. (E) The 
proportion of significant samples in the enrichment analysis of top- 100, 50, 30, 20 and 10 highest degree genes 
for LUSC DSSN in the CGC database and compare with the previous method. The x-axis is the hub genes of cancer 
and the y-axis is the percentage of significant samples in CGC enrichment analysis. (F) The proportion of significant 
samples in the enrichment analysis of top- 100, 50, 30, 20 and 10 highest degree genes for LIHC DSSN in the CGC 
database and compare with the previous method. The x-axis is the hub genes of cancer and the y-axis is the per-
centage of significant samples in CGC enrichment analysis.

Additional file 14. Figure S6. Survival curve for BRCA and LIHC. (A) Survival curve for BRCA survival analysis when 
using the most frequent 30 repetition hub genes to divide tumor samples into two groups. (B) Survival curve for 
BRCA survival analysis when using the most frequent 50 repetition hub genes to divide tumor samples into two 
groups. (C) Survival curve for LIHC survival analysis when using the most frequent 30 repetition hub genes to divide 
tumor samples into two groups. (D) Survival curve for LIHC survival analysis when using the most frequent 50 repeti-
tion hub genes to divide tumor samples into two groups. (E) Survival curve for LUAD survival analysis when using the 
most frequent 30 repetition hub genes to divide tumor samples into two groups. (F) Survival curve for LUSC survival 
analysis when using the most frequent 20 repetition hub genes to divide tumor samples into two groups.

Additional file 15. Summary documentation of Supplementary Information.

Additional file 16. Table S1. For Disease network and Control network, we selected the most repetition 300, 100, 
50, 30, 20 and 10 hub genes, compared whether these have common genes under these two reference networks by 
six ways.

Additional file 17. Table S2. The enrichment in CGC database compared with our method and previous method.

Additional file 18. Table S3. The enrichment in KEGG database compared with our method and previous method

Additional file 19. Table S4. The accuracy of the classification for four cancer.

Additional file 20. Table S5. Survival analysis for SSN.

Acknowledgements
This research was supported by Zhejiang Provincial Natural Science Foundation of China (No. LZ22C060001), National 
Key R&D Program of China (No. 2017YFA0505500), Strategic Priority Research Program of the Chinese Academy of Sci-
ences (No. XDB38040400), National Natural Science Foundation of China (11901272, 11825102, 12131020, 31930022, 
12026608), Major Key Project of PCL (No. PCL2021A12), Key Project of Natural Science of Anhui Provincial Education 
Department (No. KJ2020A0018), Key project of Anhui Finance and Economics University (No. ackyb20015),  Project of 
teaching and research of Department of Education of Anhui Province (No.2020xsxxkc014), and JST Moonshot R&D (No. 
JPMJMS2021).

Author contributions
YZ and XL proposed the sample-specific differential network, and were the major contributor in writing the manuscript. 
YZ and XC prepared Fig. 1, and construct the network. JX prepared Fig. 2, SS prepared Figs. 3, 4, 5, 6, 7, and examine the 
cancer and normal database. All authors reviewed the manuscript. All authors read and approved the final manuscript.

Availability of data and materials
LIHC cancer gene, the raw data of LIHC cancer gene. LIHC normal gene, the raw data of LIHC normal gene. LUSC cancer 
gene, the raw data of LUSC cancer gene. LUSC normal gene, the raw data of LUSC normal gene. LUAD cancer gene, 
the raw data of LUAD cancer gene. LUAD normal gene, the raw data of LUAD normal gene. BRCA cancer gene, the raw 
data of BRCA cancer gene. BRCA normal gene, the raw data of BRCA normal gene. All the datasets generated and 
analysed during the current study are available in the [TCGA] repository, [https://​www.​cancer.​gov/​about-​nci/​organ​izati​
on/​ccg/​resea​rch/​struc​tural-​genom​ics/​tcga]. Gastric Cancer Sample, GSE27342 [https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​GSE27​342]. GSE63089 [https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE63​089]. GSE33335 
[https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE33​335].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 1 July 2021   Accepted: 2 June 2022

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27342
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27342
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63089
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33335


Page 19 of 19Zhang et al. BMC Bioinformatics          (2022) 23:230 	

References
	1.	 Network TCGAR. Corrigendum: comprehensive genomic characterization defines human glioblastoma genes and 

core pathways. Nature. 2013;494:506.
	2.	 Uhm J. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. TCGA Res 

Netw Nat. 2008;455:1061.
	3.	 International Cancer Genome C, Hudson TJ, Anderson W, Artez A, Barker AD, Bel, C, et al. International network of 

cancer genome projects. Nature 2010;464 (7291):993–998.
	4.	 Hudson TJ, Anderson W, Aretz A, Barker AD, Bell C, Bernabé RR, et al. International network of cancer genome pro-

jects. Nature. 2010;464:993–8.
	5.	 Zhang J, Zhang S. Discovery of cancer common and specific driver gene sets. Nucleic Acids Res. 

2017;45(10):e86–e86.
	6.	 Zhang S, Liu C-C, Li W, Shen H, Laird PW, Zhou XJ. Discovery of multi-dimensional modules by integrative analysis of 

cancer genomic data. Nucleic Acids Res. 2012;40(19):9379–91.
	7.	 Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 

2011;17:297.
	8.	 Schilsky RL. Personalized medicine in oncology: the future is now. Nat Rev Drug Discov. 2010;9:363.
	9.	 Kiesel A, Chia BKH, Bertrand D, Chng KR, Nagarajan N, Hillmer A, et al. Patient-specific driver gene prediction and risk 

assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res. 2015;43(7):e44–e44.
	10.	 Chen L, Wang RS, Zhang XS. Biomolecular networks: methods and applications in systems biology. Hoboken: Wiley; 

2009.
	11.	 Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, 

preventive, personalized and participatory. New Biotechnol. 2012;29(6):613–24.
	12.	 Chen L, Wang R, Li C, Aihara K. Modeling biomolecular networks in cells: structures and dynamics. London: Springer-

Verlag; 2010.
	13.	 Liu X, Chang X, Liu R, Yu X, Chen L, Aihara K. Quantifying critical states of complex diseases using single-sample 

dynamic network biomarkers. PLoS Comput Biol. 2017;13(7): e1005633.
	14.	 Liu X, Liu ZP, Zhao XM, Chen L. Identifying disease genes and module biomarkers by differential interactions. J Am 

Med Inf Assoc. 2016;19(2):241–8.
	15.	 Liu X, Chang X. Identifying module biomarkers from gastric cancer by differential correlation network. Onco Targets 

Ther. 2016;9:5701–11.
	16.	 Gov E, Arga KY. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer. Sci 

Rep-Uk. 2017;7:1–10.
	17.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9:1–13.
	18.	 Gill R, Datta S, Datta S. A statistical framework for differential network analysis from microarray data. BMC Bioinf. 

2010;11:1–10.
	19.	 Hu B, Chang X, Liu X. Predicting functional modules of liver cancer based on differential network analysis. Interdiscip 

Sci Comput Life Sci. 2019;8:1–9.
	20.	 Zhang WW, Zeng T, Liu XP, Chen LN. Diagnosing phenotypes of single-sample individuals by edge biomarkers. J Mol 

Cell Biol. 2015;7(3):231–41.
	21.	 Zhang WW, Zeng T, Chen LN. Edge marker: identifying differentially correlated molecule pairs as edge-biomarkers. J 

Theor Biol. 2014;362:35–43.
	22.	 Rui L, Xiangdong W, Kazuyuki A, Luonan C. Early diagnosis of complex diseases by molecular biomarkers, network 

biomarkers, and dynamical network biomarkers. Med Res Rev. 2014;34(3):455–78.
	23.	 Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol. 2012;8:565.
	24.	 Liu X, Wang Y, Ji H, Aihara K, Chen L. Personalized characterization of diseases using sample-specific networks. 

Nucleic Acids Res. 2016;44(22):e164–e164.
	25.	 Andrew PF, Lachlan C, Mhairi M, Thomas D, Timothy H, Richard W, et al. A census of human cancer genes. Nat Rev 

Cancer. 2004;4(3):177–83.
	26.	 Sherman BT, Huang DW, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional 

analysis of large gene lists. Nucleic Acids Res. 2008;37(1):1–13.
	27.	 R Team C. R: A language and environment for statistical computing. http://​www.R-​proje​ct.​org 2013.
	28.	 Blau CA, Liakopoulou E. Can we deconstruct cancer, one patient at a time? Trends Genet. 2013;29(1):6–10.
	29.	 Bert V, Nickolas P, Velculescu VE, Shibin Z, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 

2013;339:1546–58.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.R-project.org

	Identifying network biomarkers of cancer by sample-specific differential network
	Abstract 
	Introduction
	Material and methods
	Data processing
	Functional enrichment for the individual specific network
	Survival analysis for the individual specific network
	The theoretical foundation of SSN based on different reference networks
	Constructing an individual-specific differential network

	Results
	Numerical simulation of s-PCC based on different reference networks
	Real data validation for the consistency of s-PCC in different reference sets
	DSSN reveal individual features by pathway and disease gene enrichment
	Predicting individual driver mutation by DSSN
	Prognosis analysis for tumor samples

	Conclusion
	Discussion
	Acknowledgements
	References


