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Abstract 

Background:  The biological relevance and accuracy of gene expression data depend 
on the adequacy of data normalization. This is both due to its role in resolving and 
accounting for technical variation and errors, and its defining role in shaping the view-
point of biological interpretations. Still, the choice of the normalization method is often 
not explicitly motivated although this choice may be particularly decisive for conclu-
sions in studies involving pronounced cellular plasticity. In this study, we highlight 
the consequences of using three fundamentally different modes of normalization for 
interpreting RNA-seq data from human skeletal muscle undergoing exercise-training-
induced growth. Briefly, 25 participants conducted 12 weeks of high-load resistance 
training. Muscle biopsy specimens were sampled from m. vastus lateralis before, after 
two weeks of training (week 2) and after the intervention (week 12), and were subse-
quently analyzed using RNA-seq. Transcript counts were modeled as (1) per-library-size, 
(2) per-total-RNA, and (3) per-sample-size (per-mg-tissue).

Result:  Initially, the three modes of transcript modeling led to the identification of 
three unique sets of stable genes, which displayed differential expression profiles. Spe-
cifically, genes showing stable expression across samples in the per-library-size dataset 
displayed training-associated increases in per-total-RNA and per-sample-size datasets. 
These gene sets were then used for normalization of the entire dataset, providing 
transcript abundance estimates corresponding to each of the three biological view-
points (i.e., per-library-size, per-total-RNA, and per-sample-size). The different normali-
zation modes led to different conclusions, measured as training-associated changes in 
transcript expression. Briefly, for 27% and 20% of the transcripts, training was associated 
with changes in expression in per-total-RNA and per-sample-size scenarios, but not in 
the per-library-size scenario. At week 2, this led to opposite conclusions for 4% of the 
transcripts between per-library-size and per-sample-size datasets (↑ vs. ↓, respectively).

Conclusion:  Scientists should be explicit with their choice of normalization strate-
gies and should interpret the results of gene expression analyses with caution. This 
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is particularly important for data sets involving a limited number of genes or involv-
ing growing or differentiating cellular models, where the risk of biased conclusions is 
pronounced.

Keywords:  RNA-seq, Skeletal muscle, Normalization, Resistance training

Introduction
In gene expression analyses, data normalization can be performed using a multitude of 
approaches, acting as a significant determinant of the validity and reliability of interpre-
tations [1–4]. For any data set, available normalization strategies are, at least partially, 
predetermined by the technique used for data acquisition. Still, normalization always 
involves a myriad of explicit choices that may profoundly affect analytical outcomes. For 
example, for studies utilizing quantitative PCR (qPCR), the selection of internal refer-
ence genes will largely define downstream analyses and conclusions, and the utilization 
of non-validated reference genes will lead to substantial bias [4]. Analogous to this, for 
studies involving RNA sequencing, appropriate library size scaling will determine the 
comparability of samples in downstream statistical analysis [1, 3]. Overall, data nor-
malization essentially targets sources of technique-specific artifacts and non-biological 
variation. In addition, it also defines the biological perspective from which data are 
interpreted [2, 5]. This means that the choice of normalization mode will define the bio-
logical output of the experiment. Indeed, transcript abundances can be modeled using 
either of three distinctly different approaches; abundances relative to the overall mRNA 
pool (1; i.e., using geometric averaging; per-library-size), abundances relative to the total 
amount of RNA (2; per-total-RNA), or abundances relative to amounts of tissue or num-
bers of cells used in the experiment (3; per-sample-size) [2, 5].

While each of these perspectives holds biological merit, providing gene expression 
data that can be interpreted and compared between samples (e.g., changes from before 
to after a specific treatment), they do so in different manners. First, the per-library-size 
approach provides data that assess the relative abundances of transcripts relative to all 
other transcripts, arguably enabling assessment of transcript expression that compares 
their ability to compete for slots on ribosomes. Second, the per-total-RNA approach 
provides data that assess the absolute level of transcripts relative to the entire pool of 
RNA, enabling assessment of transcript expression that compares their ability to rec-
ognize and bind to ribosomes. Third, the per-sample-size approach provides data that 
assess the overall abundances of transcripts in the biological sample at hand, and thus 
their content per-cell or per-tissue weight. Consequently, the three different normali-
zation scenarios set the stage for interpretations with different biological perspectives. 
These differences will be exacerbated in experimental models and designs involving large 
degrees of cellular perturbations and plasticity, with accompanying changes in the over-
all mRNA and total RNA expression [5–7]. Despite this, the analytical consequence of 
using a specific normalization strategy is rarely explicitly addressed in the biomedical 
literature, even though it represents an old and ever-present issue in mRNA-based anal-
yses [2, 5].

The present study aimed to investigate the consequences of using each of three nor-
malization modes (per-library-size, per-total-RNA, and per-sample-size) for transcrip-
tome profiling of RNA-seq data from a highly plastic model of human biology. Briefly, 
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twenty-five human participants conducted twelve weeks of high-load resistance train-
ing using a within-participant study design. Each participant performed exercise train-
ing with either low or moderate volume, allocated to either leg [8]. Overall, both study 
protocols led to substantial changes in muscle strength, mass, and phenotype. The lat-
ter was evaluated from bilateral muscle biopsies (m. vastus lateralis) sampled at baseline 
and after two and twelve weeks of training. Biopsy samples showed marked increases in 
overall total RNA and mRNA abundances, arguably making it an adequate experimental 
system for the proposed comparison [8, 9]. In the current analyses, the first objective 
was to identify a subset of gene transcripts that show relative stability within partici-
pants across all time points, measured as transcript abundances per-library-size, per-
total-RNA, and per-sample-size, respectively. Secondly, we used the resulting reference 
gene sets to normalize the entire RNA-seq dataset, ultimately providing estimates of 
transcript abundances corresponding to each of the three perspectives of normalization.

Methods
Study overview

Thirty-four participants completed a 12-week progressive resistance training inter-
vention with legs randomly allocated to either low (one set per exercise) or moder-
ate-volume (three sets per exercise) training, as previously described [8]. The training 
intervention consisted of leg-press, leg-curl, and knee-extension. Bilateral muscle biop-
sies were obtained before the intervention and after two and twelve weeks of training. 
Total RNA was extracted from the biopsy material (TRIzol, ThermoFisher Scientific, 
Oslo, Norway) [8], and samples were selected for analysis based on RNA integrity scores. 
Twenty-five participants had a complete set of samples with integrity scores ≥ 7 (Aver-
age RQI 9, SD: 0.4; Experion Automated Electrophoresis Station using RNA StdSens 
Assay, Bio-Rad, Norway) and were selected for the RNA-sequencing experiment [9]. A 
fixed amount of total RNA (1000 ng) was depleted of ribosomal RNA and used for RNA-
seq library preparations and subjected to Paired-end sequencing (Illumina HiSeq 3000, 
Illumina, San Diego, CA USA), as detailed elsewhere [9]. For the present analyses, data 
from the two legs/volume conditions were treated as biological replicates during data 
modeling, with interpretations focusing on the effects of resistance training per se rather 
than on differential effects of the two training volume conditions.

Preprocessing, read alignment, and quantification

Before alignment, Trimmomatic (version 0.39) [10] was used to filter out low-quality 
reads and remove poor-quality bases and adaptor sequences using default settings. The 
quality of filtered files was calculated using FastQC (version 0.11.4). After quality filter-
ing, reads were aligned to the human genome and quantified on the level of transcripts 
using RSEM (version 1.3.1) [11] and GRCh38 release-97 (downloaded from http://​ftp.​
ensem​ble.​org/).

Identification of stable genes and modeling of transcript counts

The overall assumption of the analyses was that modeling of transcript expression 
to crude estimates of the three biological denominators mRNA, total RNA, and sam-
ple size would be formative for downstream analyses due to incomparable scaling and 

http://ftp.ensemble.org/
http://ftp.ensemble.org/
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measurement errors between normalization modes, and thus would affect interpreta-
tions (Fig. 1A).

Initially, we, therefore, identified internal reference genes (stable genes) to create com-
parable normalization factors between normalization modes for subsequent analyses. 
Stable genes were selected from a subset of transcripts that showed robust expression 
across all samples, filtered with the minimum count per sample set to 30. After filtering, 
5687 genes remained in the data set for assessment of within-participant stability. For 
each normalization mode (per-library-size, per-total-RNA and per-sample-size), sta-
ble genes were then assessed using transcript counts transformed to counts per million 
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Fig. 1  A Overview of data transformation and analyzes used. Raw counts were transformed to represent 
normalized data per-library-size, per-total-RNA and per-sample-size (tissue mass). Transformed counts were 
used to identify stable reference genes free from systematic effect and with subsequent ranking by intra-class 
correlation. Normalization factors comprised of 10 transcripts from each normalization approach was used in 
differential expression analysis. B Fold-changes of sample references (average of the top ten stable transcripts 
per normalization mode) ratios with numerators plotted over columns and denominators over rows. Error 
bars represent 95% CI. C Transcripts identified as differentially up and down-regulated over time (differences 
from Week 0 to Week 2 and 12 respectively) from generalized linear models with each normalization factor 
used as a model offset. Percentages represents proportions of all transcripts identified as differentially 
expressed regardless of normalization approach. Up- and down-regulation determined from false discovery 
rate-adjusted p values (p < 0.05). Black points represent intersections, e.g., where the same transcript has been 
identified from in one or more normalization perspective
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(CPM), calculated as counts per scaled library size (total counts scaled by trimmed mean 
of M-values [1]), counts per amount of tissue (mg of tissue ×10

6 ) and as counts per total 
RNA ( 1× 10

6 , assuming equal total RNA in each reaction), respectively. CPM values 
were log-transformed before being fitted to linear mixed-effects models on a target-
by-target basis. Models were subsequently used to (1) assess the effects of the interven-
tion on transcript abundances over time and to (2) determine the intraclass correlation 
coefficient (ICC), defined as the amount of variance attributed to between-participant 
variation relative to the total variance. For each normalization mode, maximal t-values 
calculated from model coefficients representing study conditions (time and exercise vol-
ume) were used to remove transcripts showing indices of the intervention’s systematic 
effects. Transcripts with absolute t-values < 1.5 were subjected to subsequent ranking 
based on ICC values. The top ten transcripts from each normalization mode were then 
defined as stable reference genes, which were deemed suitable for calculating normali-
zation denominators. Selected transcripts were scaled ( x1/max(x) ) and averaged per 
sample to form the sample reference. To compare sample references from each nor-
malization mode, ratios were evaluated over time from estimates obtained from linear 
mixed-effects models.

Thereafter, the complete set of transcripts (excluding reference genes, filtered with 
minimum count = 1, n = 12,066) was modeled on a target-by-target basis using negative 
binomial generalized linear mixed models (GLMM) [9, 12], with normalization mode-
specific normalization factors being used as offsets in each model fit to express gene 
counts per-library-size, per-total-RNA and per-sample-size. Model fits were used to 
assess the effects of study conditions on relative gene counts. For the sake of this analy-
sis, samples from each leg were considered biological replicates to determine the impact 
of exercise training per se (time-effects). Differentially expressed genes were defined as 
significantly different from baseline on a target-by-target basis (p < 0.05 adjusted for false 
discovery rate, FDR).

Results
The training intervention led to robust increases in muscle mass and strength (on aver-
age 4% and 25%, respectively [8]). This was accompanied by an increase in total RNA 
from baseline to weeks two and twelve (on average 27% and 17%, respectively) and an 
increase in the sequenced library size, despite a lower amount of tissue being used dur-
ing library preparations [8, 9]. In the present RNA-seq dataset, the initial modeling of 
data, providing gene expression estimates relative to per-library-size, per-total-RNA, 
and per-sample-size, led to the identification of three unique clusters of stable gene tran-
scripts across untrained and resistance-trained muscle specimens. Each of these gene 
clusters consisted of genes that showed unaltered expression across muscle biopsies 
sampled from each participant (and as such was not affected by the resistance train-
ing). The number of genes in the three clusters varied substantially between modes of 
modeling (per-library-size, n = 1266; per-total-RNA, n = 90; per-sample-size, n = 18), 
with per-library-size normalization being associated with higher ICC estimates, sug-
gesting higher degrees of consistency between samples. Based on ICC estimates, the top 
ten most stable transcripts from each modeling scenario were then identified (Table 1). 
While there was no overlap between the per-library-size cluster and either of the two 
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other clusters among these transcripts, per-total-RNA and per-samples-size datasets 
contained two overlapping transcripts (Table 1).

Based on the three clusters of top-ten stable genes, we then computed a scaled aver-
age of stable transcript expression for each mode of modeling. In these analyses, the 
stable transcripts identified in the per-library-size dataset showed clear training-asso-
ciated increases in abundances in per-total-RNA and per-sample-size datasets (Fig. 1B, 
right panels). Similarly, stable genes identified in the per-sample-size dataset showed 
decreased expression in the per-total-RNA dataset (Fig. 1B, upper left panel). These dif-
ferences were most pronounced in samples obtained after two weeks of resistance train-
ing (Fig. 1B).

We utilized the three clusters of stable transcripts for normalization of the entire 
RNA-seq dataset to identify training-induced differentially expressed transcripts per 
normalization mode on a transcript-by-transcript basis. Figure 1C illustrates the overlap 
of transcripts identified as differentially expressed (up and down-regulated from base-
line) across normalization modes with black filled circles indicating which normalization 

Table 1  Genes selected as stable reference genes from each normalization scenario

Normalization strategy Transcript ID Gene symbol Gene biotype Intraclass correlation

Per-library-size ENST00000643905 0.915

ENST00000439211 DHFR Protein coding 0.877

ENST00000582787 SP2-DT lncRNA 0.873

ENST00000342992 TTN Protein coding 0.866

ENST00000361681 MT-ND6 Protein coding 0.864

ENST00000371470 MAGOH Protein coding 0.846

ENST00000234256 SLC1A4 Protein coding 0.842

ENST00000341162 FCF1 Protein coding 0.841

ENST00000480046 METTL2B Protein coding 0.839

ENST00000295955 RPL9 Protein coding 0.828

Per-total-RNA ENST00000445125 Processed pseudogene 0.715

ENST00000312184 TMEM70 Protein coding 0.579

ENST00000552002 CHURC1 Protein coding 0.559

ENST00000357033 DMD Protein coding 0.559

ENST00000275300 SLC22A3 Protein coding 0.555

ENST00000496823 BCL6 Protein coding 0.548

ENST00000546248 TRDN Protein coding 0.522

ENST00000309881 CD36 Protein coding 0.505

ENST00000005178 PDK4 Protein coding 0.496

ENST00000522603 ASPH Protein coding 0.492

Per-sample-size ENST00000496823 BCL6 Protein coding 0.536

ENST00000546248 TRDN Protein coding 0.497

ENST00000216019 DDX17 Protein coding 0.461

ENST00000005178 PDK4 Protein coding 0.458

ENST00000361915 AGL Protein coding 0.421

ENST00000418381 0.416

ENST00000294724 AGL Protein coding 0.405

ENST00000366645 EXOC8 Protein coding 0.391

ENST00000261349 LRP6 Protein coding 0.384

ENST00000306270 IBTK Protein coding 0.328
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modes are included in each set. Most transcripts identified as differentially up-reg-
ulated (31% and 21% of transcripts identified as differentially expressed from baseline 
to weeks 2 and 12, respectively) were commonly identified in all three normalization 
modes (Fig.  1C, first column). In contrast, 27% and 20% of the transcripts identified 
as differentially expressed, differential expression was only identified in per-total-RNA 
and per-sample-size scenarios, but not in the per-library-size scenario (Fig. 1C, second 
column). Furthermore, 15% and 7% of the genes identified as differentially expressed 
were uniquely identified as up-regulated using the per-sample-size normalization mode 
(Fig. 1C, third column) whereas most transcripts identified as uniquely down-regulated 
were found in the per-library-size normalization mode (Fig.  1C, fourth column). At 
week 2, discrepancies between normalization modes led to transcripts (4%) being identi-
fied as up-regulated in the per-sample-size mode but down-regulated in the per-library-
size mode.

Discussion
The present study demonstrates that the choice of normalization modality will affect the 
outcome of gene expression analyses in models of load-induced skeletal muscle plastic-
ity in humans. The three modes of normalization (per-library-size, per-total-RNA, and 
per-sample size) were associated with different patterns of training-associated changes 
in gene expression. In general, per-library-size-based normalization was associated with 
the underestimation of mRNA abundances compared to the two other approaches. This 
underestimation was attributed to an overall increase in total RNA and mRNA expres-
sion in the muscle samples [8], with per-library-size-based analyses inherently assuming 
global transcript expression to remain unchanged across samples. Despite this, library 
size-based normalization remains the point of reference for most transcriptome studies 
[3, 13], which is also true for studies investigating responses to exercise training (e.g., 
metamex) [14], even though such treatments typically lead to global-scale changes in 
transcription [8, 15, 16]. These observations advocate that the choice of normalization 
mode must be carefully evaluated in any study involving gene expression analyses to 
ensure adequate biological interpretations [7]. Indeed, for experimental models involv-
ing large degrees of cellular perturbations and plasticity, and thus potentially global 
transcription amplification, per-library-normalization will lead to underestimation of 
transcript abundances [15].

While the results from the present study indicate the impact of using different nor-
malization strategies, they do not inform us on the rights and wrongs of normali-
zation choices. The correct use of a specific normalization strategy depends on the 
research questions and model systems under study. For example, in systems where 
relative transcript abundances are of primary interest, or in models where whole-
transcriptome expression remains stable, it seems prudent to use per-library-size 
normalization [1, 3, 5]. This will provide data with the appropriate biological view-
point, essentially informing about the competitive ability of transcripts to recognize 
and associate with ribosomes. In addition, per-library-size normalization arguably 
leads to more explicit correction of the technical variation occurring during sample 
preparations (e.g., during RNA extraction). However, as exemplified in the present 
study, for systems where these assumptions are not met and global changes occur for 
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variables such as total RNA and global mRNA expression, it may lead to biased con-
clusions [5]. In such studies, absolute transcript abundances provide an alternative 
and perhaps more suitable outcome. Indeed, cellular growth is likely to be associated 
with dose-dependent changes in protein accretion and speculatively also transcript 
abundances, leaving per-total-RNA and per-samples-size normalization as the most 
beneficial approach for interpreting cellular characteristics.

In most gene expression studies, a limited number of mRNA species is investigated 
using methods such as qPCR, with normalization generally being performed using 
geometric averaging of a presumed set of stable genes [4, 17] In such studies, the 
necessity of complying with the logics of the present study is reinforced. Indeed, they 
typically involve statistical analyses that do not adjust for the presence of multiple 
observations, as is the case in RNA-seq experiments. This amplifies the likelihood of 
detecting differential gene expression patterns between different modes of normali-
zation. For such analyses, particular care is thus needed during data normalization, 
reiterating the need for selecting stable genes that adequately represent the biological 
viewpoint of desire (i.e., per-library-size vs. per-total-RNA vs. per-sample-size). For 
datasets involving resistance-trained human skeletal muscle, the stable gene clusters 
identified in the current analyses pose as potential candidates. However, their repre-
sentativeness and stability must be validated separately in any given study, as they are 
likely to be affected by tweaks in study variables such as treatment protocols (e.g., dif-
ferences in the resistance training modalities) and the nature of the biological model 
(e.g., variation in participant age and disease status) [8, 9, 18].

Conclusion
In the present study, we show that the choice of normalization modality (per-library-
size vs. per-total-RNA vs. per-sample-size) affects interpretations of transcriptome 
responses in a human model of load-induced skeletal muscle plasticity. For any gene 
expression study, data normalization should be conducted and evaluated with care 
and intent, ensuring the stability and representativity of normalization denominators, 
and importantly, the biological viewpoint of outcome measures.
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