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Abstract 

Background:  There is a growing body of evidence from biological experiments 
suggesting that microRNAs (miRNAs) play a significant regulatory role in both diverse 
cellular activities and pathological processes. Exploring miRNA-disease associations 
not only can decipher pathogenic mechanisms but also provide treatment solutions 
for diseases. As it is inefficient to identify undiscovered relationships between diseases 
and miRNAs using biotechnology, an explosion of computational methods have been 
advanced. However, the prediction accuracy of existing models is hampered by the 
sparsity of known association network and single-category feature, which is hard to 
model the complicated relationships between diseases and miRNAs.

Results:  In this study, we advance a new computational framework (GATMDA) to 
discover unknown miRNA-disease associations based on graph attention network 
with multi-source information, which effectively fuses linear and non-linear features. 
In our method, the linear features of diseases and miRNAs are constructed by disease-
lncRNA correlation profiles and miRNA-lncRNA correlation profiles, respectively. Then, 
the graph attention network is employed to extract the non-linear features of diseases 
and miRNAs by aggregating information of each neighbor with different weights. 
Finally, the random forest algorithm is applied to infer the disease-miRNA correlation 
pairs through fusing linear and non-linear features of diseases and miRNAs. As a result, 
GATMDA achieves impressive performance: an average AUC of 0.9566 with five-fold 
cross validation, which is superior to other previous models. In addition, case studies 
conducted on breast cancer, colon cancer and lymphoma indicate that 50, 50 and 48 
out of the top fifty prioritized candidates are verified by biological experiments.

Conclusions:  The extensive experimental results justify the accuracy and utility of 
GATMDA and we could anticipate that it may regard as a utility tool for identifying 
unobserved disease-miRNA relationships.
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Background
MicroRNAs (miRNAs) are short non-coding RNA molecules regulating the expres-
sion of other genes in biological processes and forming eukaryotic cell-dependent gene 
expression programs [1]. In 1993, Lee et al. [2] discovered the first miRNA in elegans. 
Subsequently, many researchers turned their focused on the role of miRNAs. Recently, 
several investigations reveal that differential expression of miRNAs is associated to the 
occurrence and progression of human diseases [3–5]. For instance, the first study for 
discovering the association between miRNA and cancer was published by Calin et  al. 
[6], and the study showed that miR-15 has a significant inhibitory level relationship with 
chronic lymphocytic leukemia. In addition, biological experiments showed that miR-15 
serves as an oncogene in lymphoma [7]. A further example of disease-miRNA relation-
ships is miR-27b and miR-23b in breast cancer [8]. The impact of miR-27b and miR-23b 
in breast cancer was validated through CRISPR/Cas9 knockdown technology. There-
fore, understanding the relationship between disease and miRNA can not only guide 
researchers to detect disease causality at the molecular level, but also promote the pro-
gress of human medicine and treatment of disease. Since traditional wet experiments are 
expensive, time-consuming and only work on tiny data. Consequently, there is a pressing 
requirement to develop efficient computational frameworks for detecting unobserved 
disease-associated miRNAs. Eventually, the proposed models for predicting disease-
miRNA associations are roughly classified into five groups [9, 10]:

Methods based on complex scoring functions predict unknown associations by 
extracting disease-disease and miRNA-miRNA scoring terms. For instance, Jiang et al. 
[11] used a rating system to rank each predicted miRNAs according to the cumulative 
hypergeometric distribution of the disease and considered the top-ranked miRNAs as 
meaningful indicators. Later, Chen et al. [12] proposed WBSMDA to infer potential dis-
ease-miRNA relationships by combining existing associations with a range of similarities 
including gaussian interaction profile nuclear similarities.

Matrix-based methods predict unknown miRNA-disease associations by using various 
matrix completion or matrix factorization algorithms. For example, Chen et al. [13] con-
structed the IMCMDA algorithm to infer disease-miRNA correlations, which integrated 
disease similarity and miRNA similarity into an inductive completion matrix to obtain 
prediction scores. After that, Chen et al. [14] constructed a new algorithm NCMCMDA 
based on similarity information that merged similarity-based neighborhood constraints 
with matrix completion methods. Subsequently, MDHGI [15] employed the heterogene-
ous graph inference and the matrix factorization to detect disease-causing miRNAs. By 
combining the MISIM database [16] information with gaussian similarity, IMDN [17] 
created a miRNA similarity network and then performed matrix factorization of the 
association matrix with the regularized terms of the miRNA network. Zhu et  al. [18] 
adopted the Bayesian Personalized Ranking algorithm to perform matrix decomposition 
for labeled interactions and fully utilized similarity information to enhance the accuracy 
of the prediction model. Recently, Wang et al. [19] designed the CKA-HGRTMF model 
to mine potential interactions between noncoding RNAs and diseases by introducing 
hypergraph and graph regularization terms.

Network propagation-based approaches predict potential disease-miRNA asso-
ciations by using label propagation or graph inference algorithms. For example, Li 
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et  al. [20] iteratively propagated miRNA and disease label information into the con-
structed miRNA-disease network for association identification. Later, Chen et  al. [21] 
constructed an algorithm called BNPMDA, which was a bipartite network projection 
algorithm based on known miRNA-disease correlations and bipartite graph network 
recommendation. However, BNPMDA was not suitable for disease prediction in the 
absence of any known relevant miRNA. Gong et al. [22] constructed a multi-information 
aggregation algorithm based on network embedding, called NEMII, which obtained the 
network features through the structural deep network embedding (SDNE) method and 
used the random forest algorithm for classification prediction. Specifically, the method 
revealed the superiority of random forest classifiers on unbalanced sample sets. Subse-
quently, Yu et  al. [23] constructed an advanced model to detect correlations between 
diseases and miRNAs, which learned the potential representations of nodes by perform-
ing unbalanced random walks on a three-layer heterogeneous graph. In the case study, 
TCRWMDA was found to be a useful method for predicting disease-miRNA relation-
ships. Moreover, MINIMDA [24] adopted the multilayer perceptron to discover the 
latent disease-associated miRNAs, which learned the feature representations of nodes 
from multimodal networks.

Machine learning-based methods excavate underlying disease-causing miRNAs based 
on regularization learning or recommendation algorithms. For example, Chen and 
Huang [25] proposed the LRSSLMDA method to reveal potential interactions, which 
utilized Laplacian regularization to learn local structure information from high dimen-
sional spaces. To reduce the impact of noise in dataset, Liang et al. [26] constructed an 
adaptive learning-based approach to compute the correlation scores, which learned 
novel miRNA similarity graphs and disease similarity graphs from multiple views. Later, 
EDTMDA [27] utilized the principal components analysis to remove the redundant fea-
tures and employed multiple decision trees to judge the interactions. As the unbalance 
samples would affect the prediction performance, ERMDA [28] applied the resampling 
algorithm to obtain several balanced training subsets and constructed individual learn-
ers to predict unlabeled associations.

Besides the calculation algorithms mentioned above, deep learning-based approaches 
predict miRNA-disease associations by propagating information from local neighbors 
with deep architectures such as graph convolutional network. Specifically, NIMCGCN 
[29] adopted graph convolutional network to extract characteristics and then fed them 
into an improved inductive matrix complementation algorithm. In addition, GCSENet 
[30] and PDMDA [31] constructed the full connection neural network and the softmax 
function to judge the correlations. Compared with GCSNet, PDMDA adopted three 
full connection layers to strengthen the ability of relationship prediction, which capital-
ized on the non-linear information. To fully exploit multiple views of the diseases and 
miRNAs, MMGCN [32] and MVGCN [33] employed multi-view graph convolutional 
architecture to make prediction. There are also several efforts to predict associations 
by using deep belief network and stacked autoencoder. In particular, considering that 
previous models only adopt known samples to train the network, Chen et al. [34] inno-
vatively constructed a method named DBNMDA to mitigate the effect of the sparseness 
of validated miRNA-disease relationships on prediction, which learned the informa-
tion of association pairs through a deep belief network during pre-training. Similar to 
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DBNMDA, SAEMDA [35] first utilized both labeled samples and unlabeled samples to 
perform pre-training and fine-tuning by stacking three autoencoders and then exca-
vated unobserved interactions based on the trained model. Further, Ji et al. [36] con-
structed AEMDA based on deep autoencoders, which employed the autoencoders for 
semi-supervised learning to predict unknown links. DFELMDA [37] introduced deep 
autoencoder to obtain low-dimensional embeddings and then applied deep random 
forest to estimate association probability. Meanwhile, with the popularity of graph 
attention mechanism in link prediction [38, 39], HGANMDA [40] designed semantic-
layer and node-layer attention to weight different importance of meta-paths for exca-
vating unobserved interactions.

Although the above algorithms have obtained great predictive capability, there 
are still some limitations for previous models as follows: first, approaches based on 
complex scoring functions are overly dependent on known miRNA-disease associa-
tions. Second, matrix-based approaches only capture linear associations, which are 
unable to accurately identify non-linear miRNA-disease interaction. Third, due to 
the lack of network structure information, network-based algorithms cannot acquire 
good performance in sparse networks. In addition, machine learning-based methods 
require feature engineering to improve the performance of the algorithm. Finally, 
current deep learning-based methods cannot effectively integrate multi-source data 
and use single-category features for prediction.

In order to solve the above problems, we propose a new computational model 
GATMDA, which effectively combines linear features and non-linear features based 
on multi-source data and graph attention networks to detect latent disease-miRNA 
relationships. Specifically, the whole process is summarized in the following three 
steps: first, we adopt lncRNA data as an intermediate node, which are combined 
with similarity data to obtain linear features of diseases and miRNAs respectively 
by matrix product algorithm. Second, we learn the miRNA-disease heterogeneous 
graph based on graph attention network to excavate the non-linear features of dis-
eases and miRNAs. Third, the linear and non-linear features are cascaded to form 
new features of the node pairs, which are input into the random forest to get predic-
tion scores. As a result, GATMDA achieves the prominent AUC of 0.9566 based on 
the benchmark dataset. Then case studies of breast cancer, colon cancer, and lym-
phoma could verify the model’s great independent predictive performance. In sum-
mary, GATMDA can significantly infer potential disease-miRNA relationships.

Results
In this part, we deploy some validation experiments to assess the detective capability 
of GATMDA. First, we evaluate the effect of various parameter settings on GATMDA. 
Second, we design fivefold cross validation (CV) to assess the effect of GATMDA. Third, 
we compare and discuss GATMDA with state-of-the-art algorithms on miRNA datasets. 
Fourth, we further discuss the superiority of the graph attention mechanism over other 
feature processors in extracting features. Finally, case studies are designed to further ver-
ify the effectiveness in identifying candidate correlations on GATMDA.
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Parameter adjustment

The predictive capability of an algorithm is usually affected by hyperparameter set-
tings. It should be noted that we utilize fivefold CV to measure the effect of the 
parameters on the model performance. There are six parameters in the GATMDA 
method: α, β, s, l’, r and λ. First, α denotes the dropout rate, which is adopted to avoid 
GAT overfitting. We vary α from 0 to 1 with a step value of 0.1. As shown in Fig. 1, the 
performance of the model decreases as the rate of pruning rises, which indicates that 
the increase in the rate of pruning makes less information available for mining. The 
best performance is achieved when α = 0.2. We also vary the activation parameter β 
from 0 to 1 with a step value of 0.1. As β increases, the value of AUC does not change 
greatly. As shown in Fig. 2, the best result is achieved when β = 0.2. For the parameter 
β, which is used to avoid the vanishing gradients.

For the number of neurons s, the best result of the model is obtained when we set 
s to 68. The dimension of non-linear feature l’ plays an important role in our model. 
We range l’ from 10 to 50 with a step value of 10. As shown in Fig. 3, low-dimensional 
non-linear features will lead to insufficient information extraction, while high-dimen-
sional non-linear features will lead to redundancy information extraction. Later, we 
achieve the best result when l’ = 40. r is the number of talking-heads. We vary r from 
1 to 5 with a step value of 1. As shown in Fig. 3, we obtain the optimal AUC of the 
model at r = 4, which indicates that increasing the number of attention heads can 
mine more valid information.

Finally, after determining α = 0.2, β = 0.2, s = 68, l’ = 40 and r = 4, the value of the 
decision tree λ is corrected. For the parameter λ, we set the range of values from 50 to 
500 with a step size of 50. As shown in Fig. 4, we get the best performance when the 
random forest classifier has 350 trees.

Fig. 1  Comparison of the outputs for different dropout rate α 
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Performance evaluation

We measure the predictive performance of the model using a fivefold CV method, which 
randomly divides the positive samples into five subsets, one of which is used as the test 
sample and others as the training samples. The model repeats the fivefold CV 10 times to 
obtain the ultimate results which reduce the bias caused by sample segmentation. Sub-
sequently, the predicted scores are ranked in descending order. We obtain the receiver 
operating characteristic curves (ROC) through drawing the false positive rate (FPR) with 
the true positive rate (TPR) at various scoring thresholds. The TPR (FPR) is the percent-
age of correctly identified positive (negative) cases. Typically, the area under the ROC 

Fig. 2  Comparison of the outputs for different activation parameters β 

Fig. 3  Effect of parameters r and l’ in the results (α = 0.2, β = 0.2, s = 68)
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curve (AUC) is computed and used to assess predictive capability of the model. In par-
ticular, when the AUC value is closer to 1, then the disease-miRNA relationship predic-
tion performance is better. As a result, GATMDA obtains an AUC of 0.9566.

Algorithm performance comparison

To confirm the advantage of GATMDA in relationship prediction, we compare GAT-
MDA with other state-of-the-art algorithms through 5-fold CV: IMCMDA [13], NEMII 
[22], TCRWMDA [23] and DBNMDA [34]. IMCMDA applied miRNA and disease simi-
larity data as features to complement the disease-miRNA relationship matrix. NEMII 
used the structured deep network embedding method to obtain the nodes embed-
ding in a bipartite network for predicting the relationships between diseases and miR-
NAs. TCRWMDA performed random walks on a three-layer heterogeneous network 
to obtain features for discovering disease-miRNA relationships. DBNMDA used deep 
belief networks to weaken the effect of limited known associations on prediction results. 
The prediction results of each method are displayed in Fig. 5. To be more specific, GAT-
MDA produces the highest AUC score, obtaining average AUC of 0.9566, which has 
2.73%, 3.57%, 5.18% and 12.15% higher than those of NEMII, TCRWMDA, DBNMDA 
and IMCMDA, respectively. As for the second highest NEMII model, it adopts first-
order and second-order proximity to learn network structure, while our model exploits 
GAT to aggregate neighbors with different weights. Thus, NEMII fails to discriminate 
the importance among neighbors compared with GATMDA. TCRWMDA is based on 
random walk, which converts the network structure into sequence set. Thus, TCRW-
MDA fails to fully utilize the network structure information compared with GATMDA. 
IMCMDA is based on matrix complement, which is hard to model the non-linear rela-
tionships between diseases and miRNAs. Comparing with DBNMDA, GATMDA fuses 
linear and non-linear features. The possible reason is that linear features contain abun-
dant shallow biological information and some noise, while non-linear features learned 
from disease-miRNA network can reduce the noise of linear feature and supplement 

Fig. 4  Comparing the output of different decision trees λ 
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deep structure information for linear features. Therefore, fusing linear and non-linear 
features can obtain comprehensive and complementary information for association 
prediction.

To further validate the superiority of GATMDA, we apply the paired t-test to meas-
ure whether there are statistical differences between GATMDA and other four meth-
ods. In Table 1, the statistical analysis suggests that there are very significant differences 
between GATMDA and compared models under the confidence level of 0.05. In conclu-
sion, comparing with other models, GATMDA exhibits better results in fivefold CV.

Ablation study

GATMDA is designed to predict latent links between diseases and miRNAs based on 
matrix multiplication method and graph attention network algorithm. To confirm the 
superiority of different components of GATMDA in prediction associations, we com-
pare the results of GATMDA with four different feature processor combinations. First, 
we use the basic linear multiplication method to obtain linear features for prediction 
(combination 1). Second, we use the non-linear features obtained by GAT for predic-
tion (combination 2). Third, linear features cascade the features extracted by the singular 
value decomposition (SVD) algorithm for prediction (combination 3). Finally, linear fea-
tures cascade the features extracted by the DeepWalk algorithm for prediction (combi-
nation 4).

Fig. 5  AUC values of GATMDA with other methods in the fivefold CV

Table 1  The differences between GATMDA and other models under fivefold CV

GATMDA vs NEMII TCRWMDA DBNMDA IMCMDA

p-value 5.8e−05 1e−04 2.6e−05 2.1e−06
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We use the AUC value of fivefold CV experiment to measure the effect of different 
feature combinations. In addition, we adopt several metrics to further assess the effec-
tiveness of the GATMDA including accuracy (ACC), area under the precise-recall curve 
(AUPR), recall (REC), F1-measure (F1), specificity (SPEC) and precision (PRE).

According to the results in Table 2, the AUC value of GATMDA is significantly bet-
ter than that of Combination 1 and Combination 2, which indicates that combining 
linear and non-linear features performs better than single-category feature for predic-
tion. Then, the AUC value of combination 1 is lower than other combinations, indicat-
ing that association network features can supplement similarity features to improve the 
predictive capability of the model. Ultimately, the algorithm GATMDA outperforms 
combination 3 and combination 4, which shows that GAT feature processing is more 
suitable for disease-miRNA association prediction, since GAT is better at mining neigh-
bor relationships.

Comparison with other classifiers

GATMDA behaves well on HMDD v2.0 by utilizing the random forest (RF) algorithm. 
To prove that RF is the most suitable method for us, we compare the RF [41] algorithm 
with adaptive boosting (Adaboost), eXtreme gradient boosting (XGBoost) algorithm and 
Light gradient tree boosting machine (Light GBM). In the Adaboost algorithm, we set 
the learning rate to 0.7 and the resting parameter values to default. XGBoost classifier 
and Light GBM classifier all adopt default parameters. As show in Fig. 6, the AUC val-
ues of Adaboost, XGBoost, Light GBM and RF are 0.8909, 0.9341, 0.9159 and 0.9566, 
respectively. Simulation results prove that RF has higher AUC score than other models, 
because the RF algorithm is effective on high-dimensional datasets relative to the boost-
ing algorithm [42].

Robustness and significance validation

In order to evaluate the robustness of GATMDA, we further test the performance of 
GATMDA on another dataset named HMDD v3.2 [43]. We obtain the dataset of HMDD 
v3.2 from Li’s model [44], which includes 4189 interactions between 437 miRNAs and 
431 diseases, 8172 relationships between 861 lncRNAs and 437 miRNAs, and 4518 
lncRNA-disease correlations. To obtain a systematic and convincing comparison, we 
compare GATMDA method with several baselines on HMDD v3.2, including LAGCN 
[39], NEMII [22] and GCAEMDA [45]. LAGCN employed attention mechanisms to 
fuse the features of multiple graph convolutional layers for drug-disease association 
prediction. GCAEMDA constructed disease-based and miRNA-based subnetworks 

Table 2  Model performance research based on different feature processing

Methods ACC​ F1 AUPR REC PRE SPEC AUC​

Combination 1 0.992 0.335 0.463 0.358 0.352 0.995 0.906

Combination 2 0.995 0.510 0.468 0.412 0.675 0.998 0.923

Combination 3 0.996 0.601 0.459 0.485 0.794 0.999 0.937

Combination 4 0.996 0.597 0.477 0.483 0.788 0.999 0.939

GATMDA 0.996 0.606 0.477 0.498 0.781 0.999 0.956
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and adopted graph convolutional autoencoder to obtain association scores for the two 
subnetworks. Furthermore, the disease-miRNA prediction results of GCAEMDA were 
obtained by integrating the two association scores using an average ensemble approach.

The comparison of the ROC curves obtained by different methods is shown in Fig. 7. 
It can be observed that GATMDA outperforms other compared models in terms of 
AUC under fivefold CV. The AUC scores of GATMDA, LAGCN, NEMII and GCAE-
MDA are 0.9507, 0.9079, 0.9385 and 0.9415, respectively. GATMDA achieves the best 

Fig. 6  The ROC curves of GATMDA with other classifiers

Fig. 7  AUC values of GATMDA with other methods on HMDD v3.2
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performance and makes 4.28%, 1.22% and 0.92% improvements in terms of AUC values, 
respectively. To further validate the superiority of GATMDA, we apply the paired t-test 
to measure whether there are statistical differences between GATMDA and other meth-
ods. In Table 3, the statistical analysis suggests that there are very significant differences 
between GATMDA and other three models under the confidence level of 0.05. These 
experimental results fully demonstrate the robustness and significance of GATMDA.

Moreover, we randomly remove a proportion of labeled interactions for further testing 
the scalability of GATMDA. As shown in Fig. 8, the AUC of GATMDA will decrease as 
removing more relationships, but it can still achieve AUC values higher than 0.92 when 
nearly 30% of the relationships are removed, which further proves the above conclusion 
about robustness of GATMDA.

Prediction on multi‑type associations

There are multiple categories of association pairs between disease and miRNA in 
HMDD. Therefore, the prediction of multi-category miRNA-disease interactions can 
not only reveal the specific interaction mechanism but also improve our understand-
ing of how miRNAs cause disease. Currently, there are several efforts to study the 
issue of multi-category disease-miRNA interaction prediction. Chen et al. [46] con-
ducted a pioneer study to excavate the specific association type by using restricted 
Boltzmann machine. By integrating the similarity of miRNA pairs and disease pairs, 
Zhang et al. [47] established a heterogeneous network and then applied label propa-
gation to transfer each type of label information on the two integrated similarity net-
works. Afterwards, tensor decomposition algorithms are used to mine different types 
of disease-miRNA pairs, in which multi-category interactions are modeled as ten-
sors. For instance, TDRC [48] employed tensor decomposition with relational con-
straints to establish the prediction model and TFLP [49] adopted label propagation 

Table 3  The differences between GATMDA and other models under fivefold CV

GATMDA vs LAGCN NEMII GCAEMDA

p-value 1.2e−04 5.8e−03 3.9e−03

Fig. 8  Performance of different predictors when removing associations
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in addition to tensor factorization. In order to obtain the multi-type and non-linear 
relationships between disease and miRNA, Wang et  al. [50] leveraged the encoder 
and decoder of neural network to make prediction. Recently, Zhang et al. [51] intro-
duced signed graph neural network model named SGNNMD to uncover the specific 
deregulation type. To investigate the performance of GATMDA for predicting multi-
type disease-miRNA relationships, we implement GATMDA on a dataset annotated 
with two deregulation types. The used dataset is the same as that of SGNNMD [51], 
which contains 2284 up-regulation and 1980 down-regulation interactions between 
348 miRNAs and 210 diseases. Here, we select SGNNMD [51] and two typical signed 
relationship prediction models (SNEA [52] and SGCN [53]) as baselines. As a result, 
the AUC values of GATMDA, SNEA, SGCN and SGNNMD are 0.749, 0.731, 0.617 
and 0.917, respectively. Since GATMDA does not discriminate two types of edges 
when aggregating the features of nodes, it is not as effective as SGNNMD in classify-
ing link categories, which adopts subgraphs to learn the difference between down-
regulation and up-regulation interactions. In the future, we will exploit subgraph 
attention mechanisms to enhance the feature learning ability of the model for exca-
vating specific regulation type.

Case studies

To further assess the effectiveness of GATMDA in inferring latent disease-miRNA rela-
tionships, we predict the probability matrix based on all known association set. Then, 
the probability matrix is sorted by score descending to select disease-related top 50 
candidate miRNAs. Since all known relationships in the dataset are utilized to train the 
model, the predicted candidates need to be validated by known databases and literature, 
such as dbDEMC [54], HMDD v3.2 [43] and PubMed. Finally, we conduct case studies of 
three common diseases, including colon cancer, breast cancer and lymphoma.

Breast cancer is the major cancer in women and the main cause of cancer death 
around the world. Table 4 indicates that all relationships in the top 50 detected breast 
cancer candidate miRNAs are experimentally validated. For example, ectopic expres-
sion of miR-150 inhibited migration of TNBC cells and metastasis, which down-
regulated in TNBC tumor tissue compared to adjacent normal breast tissue [55]. 
Has-miR-106a regulated heat shock proteins to affect human breast cancer [56].

Colon cancer is a frequent malignant neoplasm of the digestive system that devel-
ops in the colon. The results in Table  5 show that all associations in the top 50 
detected colon cancer candidate miRNAs are experimentally confirmed. For instance, 
Yan et  al. demonstrated that hsa-miR-125a was upregulated in human colon cancer 
cells (SW480) [57]. Wang et al. [58] discovered that miR-29a inhibited the evolution 
of colon cancer by down-regulating the B7-H3 expression.

Malignant lymphomas represent a range of different diseases that arise from the 
clonal proliferation of lymphocytes. Table 6 lists the top 50 candidate miRNAs from 
the predicted results, of which 48 associations are experimentally validated. For 
example, over-expression of mir-196a was inhibition of multiplication in a non-Hodg-
kin’s lymphoma and enhancing apoptosis [59]. Cécile et  al. [60] demonstrated miR-
29a as a potential tool to influence lymphoma tumorigenesis.
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The case study results indicate that GATMDA can effectively detect latent disease-
miRNA associations, which provides ideas for discovering the mechanisms between 
miRNAs and complex human diseases.

Differential expression analysis and survival analysis

To verify whether some top predicted miRNAs can be confirmed by biological experi-
ments, we perform the differential expression analysis and Kaplan–Meier survival analy-
sis using the clinical data and expression value obtained from The Cancer Genome Atlas 
(TCGA). Specifically, we select the top predicted miRNA has-mir-196a (first in the pre-
diction list) in liver cancer and has-mir-429 (first in the prediction list) in lung cancer for 
analysis respectively. The results of differential expression analysis are displayed in Fig. 9. 
We can observe that the expression level of these two selected miRNAs in tumor group 
comparting with normal group is significantly altered.

The results of survival analysis are displayed in Fig.  10. We can see that these two 
selected miRNAs are significantly related to the survival rates of patients. In particular, 
the liver cancer and lung cancer patients with higher expression values of has-mir-196a 
and has-mir-429 respectively will both have a higher survival rate. These results suggest 
that high-ranked miRNAs predicted by GATMDA may play key role in early diagnosis 
and prognosis of tumors.

Table 4  Top 50 candidate miRNAs predicted by GATMDA to be connected with breast cancer

miRNA (1–25) Evidence miRNA (26–50) Evidence

hsa-mir-198 HMDD; dbDEMC hsa-mir-566 dbDEMC

hsa-mir-150 dbDEMC hsa-mir-582 dbDEMC

hsa-mir-208b dbDEMC hsa-mir-589 dbDEMC

hsa-mir-106a HMDD; dbDEMC hsa-mir-619 dbDEMC

hsa-mir-192 HMDD; dbDEMC hsa-mir-627 dbDEMC

hsa-mir-449a HMDD; dbDEMC hsa-mir-635 dbDEMC

hsa-mir-449b dbDEMC hsa-mir-650 dbDEMC

hsa-mir-95 dbDEMC hsa-mir-655 dbDEMC

hsa-mir-99b dbDEMC hsa-mir-744 dbDEMC

hsa-mir-1180 dbDEMC hsa-mir-942 dbDEMC

hsa-mir-1184 dbDEMC hsa-mir-484 dbDEMC

hsa-mir-1246 dbDEMC hsa-mir-503 dbDEMC

hsa-mir-1247 dbDEMC hsa-mir-99a HMDD; dbDEMC

hsa-mir-1273a dbDEMC hsa-mir-130a HMDD; dbDEMC

hsa-mir-1302 dbDEMC hsa-mir-382 dbDEMC

hsa-mir-196b dbDEMC hsa-mir-483 dbDEMC

hsa-mir-1972 dbDEMC hsa-mir-15b dbDEMC

hsa-mir-33a dbDEMC hsa-mir-28 dbDEMC

hsa-mir-362 dbDEMC hsa-mir-376a dbDEMC

hsa-mir-374b dbDEMC hsa-mir-424 dbDEMC

hsa-mir-378a HMDD; dbDEMC hsa-mir-491 HMDD; dbDEMC

hsa-mir-421 dbDEMC hsa-mir-675 HMDD; dbDEMC

hsa-mir-433 dbDEMC hsa-mir-410 HMDD; dbDEMC

hsa-mir-454 dbDEMC hsa-mir-144 dbDEMC

hsa-mir-519a dbDEMC hsa-mir-181c HMDD; dbDEMC
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Discussion
Experimental results compared with four association prediction models in fivefold 
CV demonstrate that GATMDA outperforms other prediction models. We analyze 
the impact of different feature processors and different feature combinations. In addi-
tion, case studies conducted on three diseases justify the predictive performance 
of our model. The success of GATMDA is attributed from three factors. First, we 
strengthen linear feature mining of miRNAs and diseases through miRNA-lncRNA 
correlation profile and disease-lncRNA correlation profile. Second, we employ the 
graph attention network to extract non-linear features of miRNAs and diseases by 
aggregating information with different weights for each neighbor. Third, non-linear 
features are used to supplement linear features for association prediction. In sum-
mary, GATMDA achieves excellent prediction performance by effectively fusing lin-
ear and non-linear representations in miRNA-disease association network. However, 
our work still has several limitations that are expected to be further enhanced in the 
future. On the one hand, due to the sparseness of disease-lncRNA correlation profiles 
and miRNA-lncRNA correlation profiles, the feature information provided by multi-
source data is limited. In the future, we will collect more lncRNA association data to 
enhance the quality of linear features. On the other hand, the dimensionality of linear 
features may be high if more lncRNA data are introduced. To solve this problem, PCA 

Table 5  Top 50 candidate miRNAs predicted by GATMDA to be connected with colon cancer

miRNA (1–25) Evidence miRNA (26–50) Evidence

hsa-mir-125a HMDD; dbDEMC hsa-mir-191 dbDEMC

hsa-mir-196a dbDEMC hsa-mir-192 HMDD; dbDEMC

hsa-mir-499a dbDEMC hsa-mir-193b dbDEMC

hsa-mir-198 dbDEMC hsa-mir-194 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-195 HMDD; dbDEMC

hsa-mir-29b dbDEMC hsa-mir-200a dbDEMC

hsa-let-7a HMDD; dbDEMC hsa-mir-200b dbDEMC

hsa-mir-141 dbDEMC hsa-mir-200c HMDD; dbDEMC

hsa-mir-143 HMDD; dbDEMC hsa-mir-203 dbDEMC

hsa-mir-150 dbDEMC hsa-mir-204 dbDEMC

hsa-mir-15a dbDEMC hsa-mir-205 HMDD; dbDEMC

hsa-mir-16 dbDEMC hsa-mir-20a HMDD; dbDEMC

hsa-mir-21 HMDD; dbDEMC hsa-mir-210 dbDEMC

hsa-mir-1 HMDD; dbDEMC hsa-mir-215 HMDD; dbDEMC

hsa-mir-133a HMDD; dbDEMC hsa-mir-221 HMDD; dbDEMC

hsa-mir-133b dbDEMC hsa-mir-223 dbDEMC

hsa-mir-146a dbDEMC hsa-mir-25 dbDEMC

hsa-mir-155 HMDD; dbDEMC hsa-mir-26b dbDEMC

hsa-mir-103a dbDEMC hsa-mir-31 HMDD; dbDEMC

hsa-mir-10b HMDD; dbDEMC hsa-mir-34b dbDEMC

hsa-mir-135a dbDEMC hsa-mir-429 dbDEMC

hsa-mir-151a dbDEMC hsa-mir-449b dbDEMC

hsa-mir-181b dbDEMC hsa-mir-92a HMDD; dbDEMC

hsa-mir-182 dbDEMC hsa-mir-93 dbDEMC

hsa-mir-183 dbDEMC hsa-mir-95 dbDEMC
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method is used to reduce the dimension of linear features and reduce the influence of 
noise.

Conclusion
Identifying new disease-miRNA relationships is significant for exploring the patho-
genesis of diseases and improving human medicine. However, previous compu-
tational algorithms suffer from two main challenges. On the one hand, the proven 

Table 6  Top 50 candidate miRNAs predicted by GATMDA to be connected with lymphoma

miRNA (1–25) Evidence miRNA (26–50) Evidence

hsa-mir-196a dbDEMC hsa-mir-205 dbDEMC

hsa-mir-198 dbDEMC hsa-mir-215 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-221 HMDD; dbDEMC

hsa-mir-29b dbDEMC hsa-mir-223 dbDEMC

hsa-let-7a dbDEMC hsa-mir-25 dbDEMC

hsa-mir-141 dbDEMC hsa-mir-26b dbDEMC

hsa-mir-143 HMDD; dbDEMC hsa-mir-31 HMDD; dbDEMC

hsa-mir-145 dbDEMC hsa-mir-34b dbDEMC

hsa-mir-1 dbDEMC hsa-mir-429 PMID34651663

hsa-mir-133a dbDEMC hsa-mir-449a dbDEMC

hsa-mir-208b dbDEMC hsa-mir-449b dbDEMC

hsa-mir-103a dbDEMC hsa-mir-93 HMDD; dbDEMC

hsa-mir-106a dbDEMC hsa-mir-95 dbDEMC

hsa-mir-10b HMDD; dbDEMC hsa-mir-99b dbDEMC

hsa-mir-151a dbDEMC hsa-let-7e dbDEMC

hsa-mir-152 dbDEMC hsa-mir-1180 dbDEMC

hsa-mir-181b dbDEMC hsa-mir-1184 unconfirmed

hsa-mir-182 dbDEMC hsa-mir-1246 dbDEMC

hsa-mir-183 dbDEMC hsa-mir-1247 dbDEMC

hsa-mir-191 dbDEMC hsa-mir-125b dbDEMC

hsa-mir-192 dbDEMC hsa-mir-1273a unconfirmed

hsa-mir-193b HMDD; dbDEMC hsa-mir-1302 dbDEMC

hsa-mir-194 HMDD; dbDEMC hsa-mir-146b dbDEMC

hsa-mir-195 dbDEMC hsa-mir-148a dbDEMC

hsa-mir-204 HMDD; dbDEMC hsa-mir-148b dbDEMC

Fig. 9  A Differential expression analysis of has-mir-196a in liver cancer; B differential expression analysis of 
has-mir-429 in lung cancer
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miRNA-disease associations are rare, resulting in limited information that can be 
extracted. On the other hand, the type of feature is limited, and the complex rela-
tionships between miRNAs and diseases are difficult to express with single-category 
feature. Thus, we construct a new deep learning computational model, named GAT-
MDA, based on graph attention network with multi-source data to identify potential 
disease-miRNA relationships. First, based on the lncRNA-miRNA-disease regula-
tory mechanism, we use lncRNA as multi-source biological information to enhance 
node linear feature expression. Second, we process the miRNA-disease graph using 
GAT to extract node non-linear features. In particularly, comparative experiments 
reveal that GAT assigns different learning weights to different neighbors, which can 
strengthen the mining of neighbor information between nodes. Finally, we combine 
the initial linear features with the depth non-linear features to form node new fea-
tures for association prediction. To prove the advantages of GATMDA in predict-
ing disease-miRNA correlations, we compare GATMDA with four detection models 
in fivefold CV. The results confirm that GATMDA performs better than the other 
detection models. Furthermore, case studies demonstrate that our model can effec-
tively detect latent disease-miRNA relationships. In summary, GATMDA is a pow-
erful framework for excavating disease-miRNA links. In the future, we will use 
alternative feature learning methods (such as variational graph auto-encoder algo-
rithm) to strengthen node similarity features.

Methods
MiRNA‑disease association dataset

The disease-miRNA relationship dataset is derived from HMDD v2.0 [61], which 
contains 5430 known biologically validated relationships between 383 diseases and 
495 miRNAs. We adopt the adjacency matrix MD to denote the known relationship 
between disease d(j) and miRNA m(i). If MD(i, j) = 1, it means that disease d(j) is 
connected with miRNA m(i), otherwise, MD(i, j) = 0.

Fig. 10  A Survival analysis of has-mir-196a in liver cancer; B survival analysis of has-mir-429 for in lung cancer
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MiRNA‑lncRNA association dataset

From Star-base v2.0 [62], we collect 704 experimentally confirmed correlations between 
495 miRNAs and 34 lncRNAs. The miRNA-lncRNA relationships are denoted as the adja-
cency matrix ML. If ML(i, j) = 1, it represents that lncRNA l(j) is connected with miRNA 
m(i), otherwise, ML(i, j) = 0.

Disease‑lncRNA association dataset

We download 182 experimentally confirmed correlations between 383 diseases and 34 
lncRNAs from the dataset which are published by Chen et al. [63]. DL represent the dis-
ease-lncRNA connection matrix, DL(i, j) = 1 indicates that disease d(i) is correlated with 
lncRNA l(j), otherwise DL(i, j) = 0.

MiRNA functional similarity

Wang et  al. [16] established an algorithm for computing miRNA functional similarity, 
which is on the basis of the notion that similar miRNAs are usually to be relevant with simi-
lar diseases. We are benefiting from Wang’s research and download the miRNA similarity 
at http://​www.​cuilab.​cn. The similarity scores between miRNAs m(i) and m(j) are repre-
sented by FS(m(i), m(j)).

Disease semantic similarity

Semantic similarity model 1: The relationships among different diseases can be downloaded 
from MeSH descriptor [64], which use Directed Acyclic Graph (DAG) to represent them. 
The semantic contribution of disease d to disease D can be expressed by Eq. (1):

△ represents the decay factors of semantic contribution. Therefore, the semantic value 
of disease D can be denoted by Eq. (2):

where T(D) denotes the ancestor nodes and D itself. Based on the hypothesis that if dis-
eases d(i) and d(j) have a high portion of similarity in DAG, then these two diseases are 
more similar. The semantic similarity of disease d(j) and d(i) is expressed by Eq. (3):

Semantic similarity model 2: Since the frequency of disease occurrence in the same layer 
of DAG might be distinct, we further integrate the algorithm constructed by Xuan et al. 
[65] to compute semantic similarity. The contribution to disease d in DAG(d) can be writ-
ten by Eq. (4):

(1)
{

D1D(d) = 1 if d = D

D1D(d) =
{

� ∗ D1D
(

d′
)
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}
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d∈T (D)

D1D(d)

(3)DS1
(

d(i), d(j)
)
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∑
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(
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(
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)

(4)D2D(d) = − log

[

the number of DAGs including d
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]

http://www.cuilab.cn
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Then, we calculate semantic similarity DS2 of disease d(j) and d(i) as the ratio of their 
common ancestor node’s contribution to their own contributions as follows:

Among them, the semantic value of disease D is calculated by Eq. (6):

Finally, we take the average of DS1 and DS2 as the disease similarity Ds.

GATMDA

In this work, we construct an advanced algorithm GATMDA through graph attention 
networks (GAT) with multi-source data to infer latent disease-miRNA connections. As 
shown in Fig. 11, GATMDA can be summarized in the following four steps: first, we use 
the linear multiplication method to incorporate lncRNA association data with similar-
ity data for obtaining the linear features of miRNAs and diseases. Second, we construct 
GAT to learn the deep representation in miRNA-disease heterogeneous graph to obtain 
the non-linear features of nodes. Third, we use cascade operation to fuse linear and non-
linear features into new features for miRNA-disease pairs. Finally, we employ a random 
forest algorithm as a categorization engine to classify disease-miRNA pairs.

Constructing node linear features

Since experimentally confirmed miRNA-disease associations are limited, we adopt 
multi-source data to solve the association data sparsity problem. Considering that both 

(5)DS2(d(i), d(j)) =

∑

d∈Td(i)∩Td(j)
(D2d(i)(d)+ D2d(j)(d))

DV2(d(i))+ DV2(d(j))

(6)DV2(D) =
∑

d∈T (D)

D2D(d)

Fig. 11  Flow chart of the calculation method GATMDA
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lncRNAs and miRNAs are critical regulators which influence cellular activities and 
cause some diseases by regulating gene expression [66], we use lncRNA correlation data 
to enhance disease and miRNA feature information. To retain more initial information 
of node similarity, we use the linear multiplication method to extract the linear features 
from the similarity network and lncRNA correlation data. Specifically, the miRNA lin-
ear features are generated by multiplying the miRNA functional similarity FS with the 
miRNA-lncRNA correlation profiles ML.

Similarly, we perform linear multiplication method on the disease semantic similarity 
matrix Ds and the disease-lncRNA correlation profiles DL to obtain the disease linear 
features.

We assume that there are m miRNAs, n diseases and l lncRNAs. Subsequently, each 
disease and miRNA can be represented by an l dimensional vector. Eventually, we use F 
to represent the features of all diseases and miRNAs as follows:

where m + n represents the overall number of nodes, and f ∈ Rl denotes the linear feature 
of each node.

Constructing graph attention non‑linear features

Since the relationships between diseases and miRNAs are very complex, using pure lin-
ear feature is insufficient to mine potential information between miRNAs and diseases. 
To solve this problem, we use graph attention network [67] in the miRNA-disease graph 
to learn the non-linear features of diseases and miRNAs respectively. In particular, GAT 
first implements a self-attention mechanism for a given node to calculate the importance 
of its neighbors, and subsequently the given node feature is updated by aggregating the 
features of all the neighbors according to their attention coefficients. In this section, we 
fist construct the disease-miRNA graph based on interaction matrix MD, and define it as 
G = (V, E). V = {v1, v2, …, vm + vn} are vertices, E represents the edges between miRNAs 
and diseases, and F are initial features of nodes in graph G. Then, we apply attention 
mechanism to learn the importance of a given node and its neighbor. Specifically, the 
attention coefficient eij between node ni and its neighbor nj is calculated as follows:

where W ∈ Rl’×l denotes a transformation matrix to project the initial node feature into 
the l’-dimensional space, and leakyReLu denotes a non-linear activation function that 
assigns a non-zero slope to all negative values. a ∈ R2l’ denotes the attention parameter, 
which maps features to a real number.

(7)Fm = FS ×ML

(8)Fd = Ds × DL

(9)F =
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Subsequently, we further normalize the attention coefficients eij to eliminate the 
dimensional influence between different attention coefficients as follows:

where Ni denotes the group of neighbor nodes of node ni. θij represents the normalized 
attention coefficient indicating the importance between node nj and ni.

Eventually, we use these attention coefficients to update the representations of the 
given node ni by aggregating information from its neighbors:

where σ is the LeakyReLU activation function.
To stabilize the result and reduce the bias, we use multi-head attention to steady the 

learning results of self-attention and strengthen the information extraction ability of our 
model. Since each head picks information from different representation spaces, multi-
head attention can efficiently enhance information capture capability based on differ-
ent learning focus. Specifically, integrating the K-independent attention mechanism to 
obtain vectors is as follows:

where K denotes the number of attention mechanisms.
Finally, the output of the graph attention layer is:

where l′ represents the dimension of new features, matrix F′ ∈ R(m+n)×l′ denotes the 
learned potential representation of all nodes in the network. We use matrix Fm′ ∈ Rm×l′ 
to represent the new features of all miRNA nodes. Similarly, Fd′ ∈ Rn×l′ represents the 
new features of diseases nodes.

The detailed steps of using GAT to obtain disease non-linear feature vector Fd′ and 
miRNA non-linear feature vector Fm′ are displayed in Fig.  12. The miRNA-disease 
association graph and the linear features F possessed by each node are fed into GAT. 
Eventually, non-linear node representation is obtained through feature propagation and 
attention fusion.

Fusion of linear and non‑linear features to represent miRNA‑disease pairs

Since most of the existing methods used pure linear or non-linear features for predic-
tion, the complex relationships between miRNAs and diseases are difficult to express 
by single-category feature. In order to solve this problem, we fuse linear and non-linear 
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features of nodes into a computational framework and combine them to perform our 
prediction task. Specifically, the linear feature is connected with the non-linear feature 
to respectively obtain the new feature vectors of miRNA and disease nodes:

where Fm, Fd respectively denotes the linear features of miRNAs and diseases with fea-
ture dimension l. F′m, F′d respectively denotes the non-linear features of miRNAs and 
diseases with dimension l′. Matrix Minew_feature ∈ R m×(l+l′) denotes the m miRNA vectors 
with feature dimension (l + l′). Similarly, the matrix Disnew_feature ∈ R n×(l+l′) represents 
the n disease vectors with feature dimension (l + l′). Then we use Fmd to denote the fea-
tures of miRNA-disease pair (i, j) as follows:

Predicting miRNA‑disease relationship by RF

After deriving the features Fmd of all miRNA-disease pairs, we capitalize on the ran-
dom forest algorithm to construct the relationship prediction framework. Random 
forest is made up of multiple decision trees on the basis of bagging ensemble learning 
[68]. Each decision tree is trained and constructed by randomly selecting samples and 
sample features from the training dataset. Specifically, supposing that there are N sam-
ples in the training set, we apply the re-sample mode to randomly sample N samples 

(15)Minew_feature =
[

Fm, F
′
m

]

(16)Disnew_feature =
[

Fd , F
′
d

]

(17)Fmd(i,j) =
[

fmi , f
′
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, fdj , f

′
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]

∈ R2×(l+l′)

Fig. 12  Detailed steps for obtaining non-linear embeddings of miRNA and disease using GAT​
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to train a decision tree. During the training process of the decision tree, the algorithm 
first randomly selects k-dimensional features from the 2 × (l + l′)-dimensional features 
of samples. Then the selected k-dimensional features is used to guide the process of node 
splitting. Subsequently, we repeat the previous process M times to obtain M trained 
decision trees for constructing the corresponding random forests. Finally, predicted 
scores of the disease–miRNA pairs are determined by majority voting from the scores 
obtained by the M decision trees. The parametric experiment shows that our model 
achieves the best performance when the number of decision trees M is 350.
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