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Abstract 

Background:  Reference intervals represent the expected range of physiological test 
results in a healthy population and are essential to support medical decision making. 
Particularly in the context of pediatric reference intervals, where recruitment regula-
tions make prospective studies challenging to conduct, indirect estimation strategies 
are becoming increasingly important. Established indirect methods enable robust 
identification of the distribution of “healthy” samples from laboratory databases, which 
include unlabeled pathologic cases, but are currently severely limited when adjusting 
for essential patient characteristics such as age. Here, we propose the use of mixture 
density networks (MDN) to overcome this problem and model all parameters of the 
mixture distribution in a single step.

Results:  Estimated reference intervals from varying settings with simulated data 
demonstrate the ability to accurately estimate latent distributions from unlabeled data 
using different implementations of MDNs. Comparing the performance with alterna-
tive estimation approaches further highlights the importance of modeling the mixture 
component weights as a function of the input in order to avoid biased estimates for 
all other parameters and the resulting reference intervals. We also provide a strategy to 
generate partially customized starting weights to improve proper identification of the 
latent components. Finally, the application on real-world hemoglobin samples pro-
vides results in line with current gold standard approaches, but also suggests further 
investigations with respect to adequate regularization strategies in order to prevent 
overfitting the data.

Conclusions:  Mixture density networks provide a promising approach capable of 
extracting the distribution of healthy samples from unlabeled laboratory databases 
while simultaneously and explicitly estimating all parameters and component weights 
as non-linear functions of the covariate(s), thereby allowing the estimation of age-
dependent reference intervals in a single step. Further studies on model regularization 
and asymmetric component distributions are warranted to consolidate our findings 
and expand the scope of applications.

Keywords:  Mixture density networks, Reference intervals, Latent class regression, 
Distributional regression
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Background
In vitro diagnosis plays an important role in routine clinical practice and patient man-
agement with approximately 66% of medical decisions supported by the corresponding 
test results [1]. In order to assess whether a sample taken from a patient should be con-
sidered pathological or not, reference intervals provide supporting information about 
the range of values that can be expected for healthy individuals with respect to a specific 
analyte. Accordingly, accurate determination of the underlying distributions from which 
these intervals can be derived is very important and discussed in several guidelines [2, 
3].

Direct estimation methods rely on extensive prescreening to filter out the patho-
logical samples and use only physiological data. As a consequence, they may be con-
sidered as the most promising approach for this purpose [4], but the conduction of the 
required prospective studies involves considerable effort and expense. As an alternative, 
indirect methods estimate the distributions retrospectively from test results that have 
been already collected in the everyday clinical routine and are stored in laboratory data-
bases [5]. This considerably lowers the burden associated with data collection, allowing 
smaller laboratories not only to establish own reference distributions to avoid potential 
transferability problems with external results but also to conduct periodical reviews 
from the constant flow of new data coming in. Moreover, a major advantage of indi-
rect approaches is that the available datasets are usually much larger in size. This is par-
ticularly important with respect to analytes that are heavily influenced by (continuous) 
covariates and patient characteristics such as age [6]. As the dynamics of these depend-
ency structures are particularly pronounced during the course of childhood and adoles-
cence, collecting enough data in order to be able to appropriately reflect these patterns 
is additionally challenging for prospective study designs due to the strict recruitment 
regulations in these age groups [7, 8]. Another advantage of laboratory databases is the 
wide variety of available measurements of different analytes.

However, this versatility comes at a price, as there is no pre-screening step that pre-
vents pathological samples from being included in the databases. What contributes to 
this problem is that a patient’s condition at the time of sample collection can have dif-
ferent effects on different analytes and whether or not an entry in the database should 
be considered pathological for a specific analyte. Comprehensive relevant information 
is often not available retrospectively, hence resulting in “contaminated” data with unla-
beled health status. A key element of indirect estiamtion procedures is therefore the use 
of appropriate techniques and assumptions to avoid biased estimates for the reference 
distributions due to the inclusion of pathological samples in the analysis.

Several approaches have been suggested to achieve this task [9]. The major advan-
tage of the most advanced established methods is that they work without assumptions 
regarding the shape of the distribution of pathological measurements [10–12], but they 
extract the reference distribution without being able to adjust for variations in patient 
characteristics such as age. For the reasons mentioned above, estimating pediatric inter-
vals then requires a two-step approach where the data is first split into discrete age 
groups and the resulting intervals are subsequently interpolated to create a continuous 
representation (e.g. [13, 14]). To overcome this limitation, we suggested the use of con-
ditional finite mixture models in the form of latent class distributional regression [15] by 
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relying on generalized additive models for location scale and shape (GAMLSS) [16] to 
represent the latent mixture components in an expectation-maximization (EM) frame-
work [17]. The suggested model provides an integrated approach that requires only a 
single fit to the data in order to account for both non-linear effects of covariates on mul-
tiple distribution parameters and unlabeled health status.

A current drawback of the approach, however, is that the proposed algorithm esti-
mates the mixture weights as constants and thus still independently from all covariates. 
In the context of reference intervals, this effectively means that the proportion of patho-
logical cases is the same across all ages, sex and other potentially important factors. Mix-
ture Density Networks (MDN) [18] are an alternative approach to estimate conditional 
finite mixture models that has become increasingly popular over the last decade. While 
also using the (negative) log-likelihood function of the mixture as its loss function, the 
parameters are estimated using the framework of artificial neural networks [19, 20]. In 
contrast to the EM-algorithm, defining the mixture weights as additional output nodes 
then allows the estimation of conditional mixture weights depending on the input.

This article investigates the performance and applicability of MDN’s for the indirect 
estimation of continuous reference intervals. For this purpose, we use different imple-
mentations of a basic MDN and compare it to the GAMLSS-EM approach in a series 
of simulation studies with varying setups to reflect different challenges. In addition, we 
apply all approaches to a large dataset of hemoglobin concentration measurements [21].

Methods
The general concept underlying the algorithms applied and evaluated in this article are 
finite mixture models [22–24]. These models are based on the idea that a single distri-
bution function is not able to appropriately describe the data of interest. This can, for 
example, be the result of unobserved heterogeneity where (categorical) variables that 
correlate with the outcome of interest are not observed and it is therefore not possible 
to directly account for these differences in the estimated model. As already explained 
in the introduction, this is exactly the case for the unlabelled health status of individ-
ual measurements in laboratory databases, i.e. whether or not they are to be consid-
ered pathological with regard to a specific analyte. Given the number of components 
M (roughly translating to the categories of the unobserved variable), a weighted sum of 
m = 1, . . . ,M probability density functions fm(y(i), θm) with corresponding parameter 
vector θm can then be used to construct a finite mixture distribution

where the mixture component weights αm determine the proportion to which each com-
ponent contributes to the overall model. If αm > 0 ∀m = 1, . . . ,M and M

m=1 αm = 1 , 
f (x(i)) is a convex combination of all fm(x

(i), θm) and again a probability density 
function.

Latent class regression / cluster-wise regression models [25, 26] extend the basic mix-
ture formula presented above by allowing one or more of these parameters to be func-
tions of the observed covariate vector x(i) . Although most applications focus only on the 
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location parameter of the components, a general formula of the resulting conditional 
mixture model is given by

Both the component weights as well as the component-specific distribution parameters 
of the mixture models are usually unknown and estimated from the data. For this pur-
pose, a common strategy is the use of expectation-maximization (EM) [17]. The frame-
work is also applicable in latent class regression settings [27] and has further already 
been evaluated in the context of reference interval estimation [15]. However, EM-algo-
rithms usually estimate the mixture weights independent from covariates, i.e. all αm

(

x
(i)
)

 
reduce to αm . As stated in the introduction, artificial neural networks are a viable alter-
native for estimating the unknown parameters of a mixture model. These Mixture Den-
sity Networks (MDN) [18, 28] are not restricted to independent mixture weights, but 
usually involve a higher number of model parameters to be estimated and are hence 
more demanding regarding sample sizes.

While there are other approaches for latent class regression available, this article 
focuses on the evaluation of different applications of MDNs for reference interval esti-
mation in comparison with the previously proposed EM-algorithm. The remainder of 
this Section hence provides more details on the implementation of the different algo-
rithms. All analyses are conducted using the free software environment for statistical 
computing R [29] and the corresponding code is provided in the Additional files together 
with a short instruction on how to recreate the simulated scenarios.

Mixture density network

The general structure of the applied artificial neural networks used in the simulation 
study is closely related to the original MDN proposed by Bishop [18]. The loss function 
to be minimized is simply the negative log-likelihood of the mixture, i.e.

with the hat above the unknown parameters indicating them being estimated from the 
data. For this purpose, the network feeds the input to a single hidden layer with tanh 
activation functions. If the mixture is using the same probability density function with K 
parameters for all M components, the output layer for a univariate outcome variable y(i) 
consists of (K + 1)M output neurons. As this article focuses on Gaussian components, 
θm
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 and K hence equals two.
The model weights are estimated via two different methods. First, we use the BFGS 

algorithm [30] in the standard distribution of R [31] together with the gradients pro-
vided by Bishop [28] and report the results after convergence. As the most striking 
advantage of using artificial neural networks over the EM-algorithm in this comparison 
is the ability to estimate conditional mixture weights α̂

(

x
(i)
)

 , we run the algorithm once 
with the output fully connected to the hidden layer and again without connecting the 
units reserved for the mixture weights. As the latter of course results in constant mixture 
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weights independent from the input, the model serves as middle ground between EM 
and MDN. In the remainder of the article, we refer to the independent and dependent 
setup as BFGSα and BFGSα(x) , respectively. The second estimation strategy uses the R 
interface to Keras and TensorFlow (Probability) [32, 33]. This results in a small 
difference regarding the activation function for the standard deviations σ

(

x
(i)
)

 , as the 
softplus function is used as default instead of the “plain” exponential function. In addi-
tion, the gradients are calculated via automatic differentiation and the popular ADAM 
optimizer [34] is used and initialized with random glorot uniform starting weights [35]. 
Finally, 20% of the data are reserved for a validation set to employ early stopping with 
patience parameter set to 20.

Expectation‑maximization

The implemented EM-algorithm is basically identical to the approach described in Hepp 
et al. [15] (also provided in the Additional files) and can be considered as the current 
benchmark for conditional mixture modeling in the field of reference interval estima-
tion. The model parameters of the mixture components are estimated via the maximum 
likelihood approach implemented in the gamlss-package for generalized additive mod-
els for location scale and shape [36]. However, for the sake of improving the compara-
bility we use tanh bases to estimate the non-linear terms for all components instead of 
the “regular” cubic B-splines commonly used in the application of generalized additive 
models to match the activation functions of the hidden layer in the MDN. For a single 
continuous covariate x the b-th of 1, . . . ,B bases is calculated as

where

and

A Figure with examples for three different choices of B is provided in the Additional 
file 4.

As mentioned earlier, the choice of appropriate starting weights is a very important 
prerequisite for the algorithm to provide reasonable results. As a consequence, we use 
the initialization strategy proposed in the original article based on the cumulative dis-
tribution function of the Gaussian distribution with parameters estimated via the ‘naive’ 
maximum-likelihood fit on the data.

Results
In order to investigate and compare the different approaches we first adopted the simu-
lation study used in Hepp et al. [15] as baseline setting. However, since a key difference 
between the applied algorithms is their ability to account for the effects of covariates on 

tanh (αb + βb · x),

αb =
−B

(

min(x)+
(b−1)
B−1

(max(x)−min(x))

)

max(x)−min(x)

βb =
B

max(x)−min(x)
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the component weights, we extended the setting to highlight the performance in scenar-
ios where the proportions of the components in fact vary for different values of a covari-
ate. In addition, we use data from the PEDREF reference interval initiative [21] to assess 
performance in a real-world example.

Simulated data

The data-generating process for this simulation study is a Gaussian mixture with two 
components both depending on a single predictor variable x(i) ∼ U(0, 1) . In order to 
mimic the conditions likely to be found in laboratory databases, the components are 
further positioned above each other intended to represent the “physiological” reference 
distribution and the “pathological” values. While the shape of the effect on location and 
scale (i.e. mean and standard deviation for Gaussian distributions, respectively) is always 
the same, a total of four different scenarios are examined, which differ in terms of sample 
size and the relationship between x(i) and the weights of the mixture components (inde-
pendent/dependent). A detailed description of the process is provided in the Additional 
files.

Each setting is repeated for R = 100 simulation runs, resulting in the evaluation of a 
total of 400 datasets. The left panel in Fig. 1 shows an example draw of n = 5000 obser-
vations with the true density of the “main” distribution highlighted by the shaded area 
in the background and samples from the pathologic distribution colored grey. Finally, 
the solid lines show the location parameter of both components. For the sake of improv-
ing the comparability further, we used the same number of basis functions B = 5 for the 
estimation of the distribution parameters in all applied models, which translates into a 

0.0 0.2 0.4 0.6 0.8 1.0

−20

0

20

40

60

80

Example draw

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

x

αm

0.0 0.2 0.4 0.6 0.8 1.0

−10
0
10
20
30

x

µm

0.0 0.2 0.4 0.6 0.8 1.0

8
10
12
14
16
18
20

x

σm

Fig. 1  Simulation example. Left: Example draw of 5000 points from the data-generating process. Samples 
from the “main” component are colored black and backgrounded with an area depicting the density of their 
parent distribution. Grey points are sampled from the “pathologic” component. Right: True parameters of 
the data-generating process. Regarding the mixture component weights, the dependent and independent 
scenarios are depicted by solid and dashed lines, respectively
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single hidden layer with five nodes for the MDNs. The models fitted via the EM-frame-
work use five tanh-bases as described at the end of the Methods Section. Both input and 
output variables were standardized by substracting the sample mean and dividing by the 
sample standard deviation before model fitting.

Since the labels of the estimated components are completely interchangeable, 
the results of the simulations are first unified by presuming some a priori knowledge 
about the approximate location of the healthy samples, which is quite reasonable in the 
actual use case of reference distributions. For this purpose, the component for which 
∑n

i=1 µ(x
(i)) is smaller is mainly positioned below the other and is hence identified as 

the main component with m:=1 . To compare the performance of the algorithms, we 
calculated the squared error for the mixture component weights as well as the location 
and scale parameters of the main component on the original scale of input and output. 
However, the first examination of the results showed that the errors of some or all of the 
applied MDN algorithms “exploded” in a considerable part of the simulation runs. This 
can be traced back to a problem also encountered by the EM algorithm if it is initialized 
with random observation weights. To be specific, at some point during model fitting the 
estimated location parameters may eventually cross each other and the optimizer con-
verges to a local minimum of the loss function, resulting in parts of the estimated com-
ponents switching places.

Figure 2 shows both component locations estimated via the BFGS and ADAM opti-
mizers for all 100 simulation runs in the setting with mixture weights depending on the 
input variable. Considering the large jumps of the estimated parameters between the 
two actual components, the huge errors in the affected runs are not surprising. While 
the overall model may even describe the data reasonably well, the individual parameters 
themselves of course deviate strongly from where they should be once switching places. 
The main problem, however, is that the reference intervals derived from the correspond-
ing components would clearly be invalid because they switch between describing the 
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Fig. 2  Component switching. Identifiability problems promoted by unfavorable random initial model 
weights illustrated by the estimated location parameters alternating between the true component means. 
Dark grey lines represent the main component, with the slightly more wide solid lines representing the 
true location parameter of the data-generating process. Left: Results from the BFGS optimizer on the fully 
connected MDN. Right: Results of the ADAM optimizer with early stopping
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distribution of physiological and pathological samples for different ranges of the covari-
ate. Table 1 provides an overview on the frequency of location crossing for each algo-
rithm and simulation setup. With respect to the MDN models, all randomly initialized 
algorithms exhibit component switching in at least 15% up to 53% of the corresponding 
runs.

While the EM-algorithm seems to be completely unaffected, it should again be noted 
that the applied version uses custom initial observation weights in order to prevent 
exactly this problem from occuring. As a consequence, we aimed to improve the per-
formance of the MDNs in a similar way by using a partially customized set of starting 
weights that already positions the components above each other. We tried to keep this 
approach as simple as possible by using ordinary least squares estimation on B = 5 tanh-
bases generated as described in the Methods. Then, the 10% and 90% quantiles of the 
residuals are calculated and added to the intercept. The coefficients of the resulting two 
shifted versions of the original OLS estimation are used as initial weights for the network 
output regarding the location parameter of the two components µ(x(i)) , while the coef-
ficients for the tanh-bases are used as initial weights for the hidden units. All remaining 
weights from the hidden layer to the scale and mixture weight outputs remain randomly 
initialized. An detailed explanation of the procedure is provided in the Additional files 
with an illustration based on the examplary data in Fig. 1.

Using these adjusted starting weights clearly improved the performance by reduc-
ing the number of runs with component switching for MDNs estimated via BFGS, but 
even more so for those estimated via ADAM even though the latter performed worse 
using strictly random initial weights (Table  1). Moreover, a minor proportion of the 
BFGS algorithms failed to identify the mixture and tried to fit the data with a single com-
ponent. As a consequence, we also removed these runs to base the comparison of the 
estimated parameters on situations where the main component has been identified cor-
rectly (see the Additional file 4 for a Table providing the number of affected runs per 
algorithm).

Figure 3 illustrates the average prediction error over the full range of the input vari-
able for the parameters together with the 95%-quantile of the first component that could 
serve as reference threshold in an actual application setting. The predictions are based 
on the model estimates resulting from the simulation setup with mixture weights non-
linearly depending on the input and sample size n = 10000 . The error is then obtained 
from the deviation to the corresponding values of the data-generating process. Unsur-
prisingly, both algorithms that assume constant mixture weights show higher errors with 
respect to α1

(

x(i)
)

 itself, with no obvious differences regarding the initialization strategy. 

Table 1  Number of runs out of 100 with location crossing for each algorithm

Setting EM BFGSα BFGSα(x) ADAM

n α Random Custom Random Custom Random Custom

10000 Dep 0 37 16 29 16 53 1

Indep 0 27 14 18 8 39 0

5000 Dep 0 32 19 36 14 48 4

Indep 0 23 17 15 11 44 0
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More interesting, however, is that this assumption directly affects the accuracy of the 
predictions of the distribution parameters as well, with the BFGS optimizer on the MDN 
with constant mixture weights performing worst. Moreover, although runs with loca-
tion crossing have been excluded, the customized starting weights seem to improve the 
performance of the ADAM optimizer regarding the estimation of µ1

(

x(i)
)

 , but not nec-
essarily σ1

(

x(i)
)

.
As should be expected, both EM and the BFGS variant with the corresponding model 

assumption perform better in the simulated data settings with constant mixture weights, 
the latter being slightly superior (see Fig.  4). While the average predictions from the 
ADAM optimizer are arguably the worst in these settings, the full MDN with BFGS per-
forms actually quite well despite the misspecification of the mixture weights, especially 
if the customized starting weights are used. Then it even outperforms the EM algorithm 
in all other predictions, i.e. location, scale and the 95%-quantile of the main component.

In order to provide a summarized view of the results in all settings and variations, 
Table  2 provides the average integrated squared error ISE(θ̂) =

∫ 1

0

(

θ̂ (x)− θ(x)
)2

dx 
for the same parameters as depicted in Figs. 3 and 4 . While the general findings taken 
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from these Figures are also evident in the average ISEs, the models with customized ini-
tial weights seem to perform slightly worse when compared to their randomly initial-
ized counterparts. This is also true for the BFGSα(x) estimates, despite the improvement 
in the average prediction error noted in the independent setting in Fig. 4. The impor-
tant exception are the average ISE(µ̂1) of the ADAM optimizer, which clearly benefits 
from the advantageous starting position provided by the customized weights. It should 
be reminded, however, that the results are again based only on the runs of the respec-
tive algorithms with both components properly identified, i.e. without location cross-
ing and 1n

∑n
i=1 αm(x

(i)) ≥ 0.05 for all m. Regarding the models assuming constant αm , 
there might be a small tendency in favor of the EM algorithm especially in the settings 
with the number of available samples at n = 5000 which could be explained by the fact 
that it requires fewer unknown coefficients to be estimated. In the comparison between 
the fully connected models, ADAM with early stopping surpasses BFGS optimiza-
tion only with respect to the estimation of the scale parameter σ1

(

x(i)
)

 . As mentioned 
in Section , however, the default output layer for mixtures of Gaussian distributions 
in TensorFlow Probability applied in this simulation study uses the softplus 
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activation function for the standard deviation. Therefore, these results could also indi-
cate a possible advantage over the standard exponential function.

Hemoglobin concentration

In addition to the simulation settings evaluated above, we apply all candidate algorithms 
for the estimation of pediatric hemoglobin reference intervals. The available labora-
tory tests were performed in the context of patient care in the Department of Pediatrics 
and Adolescence at the University Hospital Erlangen, Germany as part of the PEDREF 
reference interval initiative [21]. For this comparison, we used test results regarding 
hemoglobin concentration of girls aged between one and eighteen years, irrespective of 
health status or specialty unit, including intensive care and oncology units. After remov-
ing samples taken at subsequent visits of the same individual, a total of n = 60423 test 
results were availablefor the analysis.

In order to assess the stability of the estimates, we ran each algorithm 100 times and 
used a different set of initial values in the corresponding random component of the 
starting weights for each repetition. Interestingly, the problems discussed in the previ-
ous section simulation setup, i.e. location crossing and failure to identify more than a 
single component in the data, also occured in a few runs despite the large sample size. 
However, comparing the loss of all repetitions revealed relatively poor negative log-like-
lihood values for the affected models.

Table 2  Average integrated squared error as the average difference between predicted value and 
data-generating process

Bold numbers denote the smallest value comparing EM to BFGSα and BFGSα(x) to ADAM in each setting. Runs with location 
crossing or failing to identify two components are excluded for the corresponding algorithms

Setting EM BFGSα BFGSα(x) ADAM

α n Random Custom Random Custom Random Custom

Average ISE(α̂1)

Dep. 10000 0.0139 0.0135 0.0137 0.0045 0.0057 0.0067 0.0078

5000 0.0149 0.0145 0.0143 0.0073 0.0099 0.0092 0.0125

Indep. 10000 0.0021 0.0019 0.0019 0.0049 0.0065 0.0049 0.0071

5000 0.0032 0.0042 0.0037 0.0079 0.0109 0.0087 0.0096

Average ISE(µ̂1)

Dep. 10000 1.2292 1.4308 1.4921 0.6809 0.8533 1.2838 0.8794

5000 1.6960 1.8426 2.1324 1.3833 1.8223 1.9156 1.7716

Indep. 10000 0.3875 0.4078 0.4649 0.6731 0.9459 1.2989 0.8172

5000 0.8185 0.8941 0.9648 1.3963 1.9779 2.0296 1.5842

Average ISE(σ̂1)

Dep. 10000 0.4588 0.4583 0.5003 0.2780 0.3837 0.2672 0.3645

5000 0.6584 0.6347 0.7312 0.4800 0.7890 0.3657 0.6859

Indep. 10000 0.1992 0.1813 0.2173 0.2741 0.4116 0.2797 0.3574

5000 0.3370 0.3286 0.4086 0.4686 0.7624 0.4462 0.5760

Average ISE(Q̂0.95,1)

Dep. 10000 4.4896 4.9129 5.1704 2.4881 3.3152 2.8388 3.0161

5000 6.1319 6.3538 7.2327 4.6173 6.8189 4.0797 6.2077

Indep. 10000 1.5022 1.4790 1.6823 2.4710 3.5811 2.9686 2.8411

5000 2.7713 2.9091 3.2766 4.5883 7.0449 4.9499 5.2115
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Figure 5 shows the 2.5%, 10%, 25%, 75%, 90% and 97.5% quantiles of the main compo-
nents for all applied MDN algorithms together with the estimation of the correspond-
ing mixture component weight below. The depicted estimates are derived from the runs 
with minimum loss. For ease of differentiation, the three competing approaches are 
depicted side by side in separate plots. For reference, the results of the EM algorithm are 
shown in all three columns along with the discrete results (only 2.5% and 97.5%) from an 
alternative approach which requires splitting of the dataset.

On a first note, all methods in the latent class regression framework, i.e. MDNs as well 
as EM, provide slightly more conservative solutions than the alternative discrete method 
in the sense that the proposed intervals are narrower. With respect to the more interest-
ing 2.5%-quantile (low hemoglobin concentration is considered pathologic), the MDN 
results for BFGSα and ADAM are closer to these stepwise estimates in the middle of the 
observed age range, whereas the models with constant component weights are closer on 
the edges. The comparison of EM and BFGSα yields rather identical results, especially 
regarding the estimated component weights. In this regard, both BFGSα(x) and ADAM 
show an increasing proportion of healthy samples until about 10 or 11 years of age and 
a decreasing proportion thereafter. Moreover, the quantiles of the estimated distribu-
tions show somewhat larger differences relative to the component determined by the 
EM algorithm. Additional differences occur especially at the peripery of the age variable. 
To be specific, the estimates of the randomly initialized BFGSα(x) model exhibit slightly 
increased variability especially at a young age, while the opposite can be observed for the 
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result of the ADAM optimizer. The latter is probably the effect of early stopping, which 
may regularize the estimation a little to strongly in this case. The strongest deviation 
from the EM results can be observed for ADAM with the (partially) customized starting 
weights, which is the only model identifying a clear increase of all quantiles beginning at 
the age of fourteen.

In this context, customizing the starting weights interestingly has actually the opposite 
effect on the variance of the estimated quantiles obtained from the two different opti-
mization strategies. Figure 6 illustrates this using the estimated 5%-quantiles, where the 
stabilizing propertiy of the custom weights on the standard deviation of the BFGS out-
put is clearly visible, whereas the opposite is true for ADAM. In fact, the standard devia-
tion rises rather steeply in the area where the corresponding quantiles in Fig. 5 deviate 
heavily from the other algorithms.

Revisiting the model results presented earlier, both solutions from the ADAM opti-
mizer actually result in the highest values with respect to the loss, while the smallest loss 
is achieved by the purely randomly initialized BFGS algorithm with constant component 
weights. While this may seem at first to be a contradiction to the results of the simula-
tion study, it should be reminded that the loss is calculated from all components in a 
mixture and is therefore not necessarily a good indicator of the accuracy regarding the 
identification of a specific component.

Discussion
This article examines the suitability of artificial neural networks in the form of mixture 
density networks (MDN) in a latent class distributional regression framework for the 
estimation of indirect reference intervals to support in vitro diagnostics. In contrast to 
most established methods, the proposed approach enables the estimation of physiologi-
cal and pathological components from unlabeled data while simultaneously adjusting for 
covariates such as age. Moreover, the framework is not restricted to a single input but 
able to incorporate multiple continuous and/or categorical variables and thereby able to 
capture potential interaction effects or other interesting dependecy patterns. Previous 
estimation strategies based on the EM-algorithm already provided promising results, 
but were not able to model potential patterns regarding the relationship between the 
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component weights of the mixture (i.e. the proportion of healthy samples) and the input 
variable(s).

As a varying proportion of healthy and pathological samples with respect to important 
covariates such as age is actually a quite reasonable assumption for laboratory databases, 
neglecting these potential dependencies clearly raises the risk of biased reference inter-
vals. This is clearly illustrated by the results of the simulation study, which demonstrate 
that if such a dependence of the mixture components on the input is present in the data, 
neglecting it will eventually lead to biased estimates of all other distribution parameters 
as well. All variants of the fully connected MDNs clearly and consistently outperform 
the reduced (and thus misspecified) models with constant component weights in the 
fully conditional simulation settings. Although the opposite is true in the rather theo-
retical case of independent settings, the differences are less pronounced and more likely 
to be due to their lower accuracy than systematic bias.

While the proposed fully connected mixture density networks should be preferred 
over the EM-algorithm for this reason, our results also indicate that both initialization 
and optimization strategy affect the results of the network and must be carefully con-
sidered. Like many applications of mixture models and latent class regression in par-
ticular, MDNs also struggle with identification problems. Both evaluated optimization 
strategies often moved towards solutions where the estimated component locations 
switched places somewhere over the range of the input variable and were then stuck 
in these local optima. By using partially customized initial weights, this problem could 
often be avoided, as the algorithm then starts in a relatively favorable position. However, 
implementing these weights requires reasonable assumptions about the true location of 
the components and is probably a little less straightforward than setting up customized 
observation weights for the EM algorithm. On the other hand, initializing the model 
multiple times—as is common practice in the application of most artificial neural net-
works – might generally help to mitigate this problem as seen in the hemoglobin data 
example.

Considering only the solutions with both components properly identified, the BFGS 
algorithm performed slightly better than ADAM with early stopping. It should be 
noted, however, that the setup for all applied networks consisted of a single hidden 
layer with only five hidden units. As a consequence, severely overfitting the data by 
running the BFGS until convergence is not really possible and might actually be more 
prominent if more hidden units are added. A small indication of this can possibly be 
observed in the application on the hemoglobin data, where the BFGS solutions are 
slightly more dynamic in comparison. Early stopping as implemented together with 
the ADAM optimizer, on the other hand, may regularize the model too strongly in 
this case. Additional experiments with different setups and strategies, e.g. L2-penal-
ties on the weights from the input to the hidden layer, are therefore required. Moreo-
ver, we limited the simulation study to settings with two Gaussian components and a 
single input variable. While this evaluation is already very helpful with respect to the 
hemoglobin concentration example, these assumptions are not meaningful for a large 
variety of other analytes. Further studies with asymmetric distributions and multiple 
pathologic components have to be conducted to expand the scope of applications to 
a wider range of analytes. However, it is expected that the resulting increase in the 
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number of output parameters will place greater demands on sample size and poten-
tially further complicate the correct identifiability of the separate components, calling 
for more sophisticated solutions than the cutomized starting weights.

Conclusion
In this first evaluation of mixture density networks in the context of indirect refer-
ence interval estimation, our results demonstrate the ability of the applied algorithms 
to correctly identify the latent components in unlabelled data. By explicitly model-
ling the dependency structure of the component weights, i.e. the proportion of physi-
ological/pathological samples in the database, the fully connected MDNs avert biased 
distributions and their corresponding quantiles required for the creation of reference 
intervals. Using a set of partially customized starting weights further greatly reduces 
the occurence of identifiability problems due to the high flexibility and relatively large 
number of estimated parameters in this framework. Further investigations regard-
ing appropriate regularization strategies are desired to determine the best practice 
and provide appropriate guidelines to extract the most accurate and reliable intervals. 
Moreover, settings with multiple output and/or input variables may eventually help 
to provide a deeper understanding of the relationship between different analytes and 
their dependence on a patient’s individual characteristics.
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