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Background
Drug–target interaction (DTI) indicates the binding of drug compounds to their targets. 
The targets refer to the proteins or some bio-molecules to which the drug directly binds, 
and which are responsible for the therapeutic efficacy of the drug in vivo [1]. The drugs 
exert their clinical effects in treating diseases by changing the structure of the targets or 
regulating their metabolism. Therefore, accurate identification of DTI is one crucial step 
of drug discovery and development [1–3]. For example, in process of drug repositioning 
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[4] task, DTI prediction is regarded as the foundation to find new targets of existing 
drugs. Nowadays, due to the high-cost and time-consuming traditional biological exper-
iments, effective computational methods are urgently needed [5–7].

In response to this demand, many DTI prediction methods have been proposed in 
recent years. These methods mainly includes two parts: encoding methods and DTI pre-
diction methods.

As for the encoding methods, most studies for DTI prediction label their inputs 
by a character-based dictionary. For example, in DeepDTA [6], with a dictionary 
like {‘C’:1,‘H’:2,‘N’:3,. . .,‘=’:63}, the drug simplified molecular input line entry system 
(SMILES) sequence ‘CN=C=O’ was labelled as [1 3 63 1 63 5]. It labelled each char-
acter of drug SMILES by its corresponding integer in the character-based dictionary. 
In addition, in other chemical compounds related fields, some works applied tokeni-
zation methods to extract substrings from drug sequences as their functional groups 
at the chemical level. Study [8] tokenized the names of chemical compounds by the 
open parser for systematic IUPAC nomenclature (OPSIN) tokenizer [9] and byte-pair-
encoding (BPE) [10] in predicting chemical compounds task. Based on BPE, study [11] 
introduced a tokenization algorithm named SMILES pair encoding (SPE) to label the 
SMILES by the learned chemical groups. It has been applied to generative and predic-
tive tasks and molecular tasks. Study [12] proposed a ChemBoost approach to predict 
protein-ligand binding affinity scores based on substrings extracted by Word2vec [13] 
and BPE. In these studies, tokenizer methods in the fields of natural language processing 
(NLP) were used for drug SMILES segmentation, and then the segmented SMILES were 
applied to compound-related tasks.

For DTI prediction methods,many efforts have been conducted to predict drug–tar-
get binding affinity scores in recent years. The traditional approach to DTI prediction 
mainly based on similarity [14, 15]. Study [16] used the 2D compound similarity of drugs 
and Smith-Waterman similarity of targets as the inputs. Then, the Kronecker regularized 
least squares (KronRLS) algorithm was employed to predict the binding affinity values 
of drug-tart pairs. Study [17] also utilized a number of similarity-based information and 
features to predict DTI by a gradient boosting machine. DTINet [18] was based on the 
assumption that similar drugs may share similar targets. Taking a series of similar matri-
ces as input, it was designed to find an optimal projection from drug space onto target 
space by the random walk with restart (RWR) algorithm.

With the significant success of deep learning in computer version, speech recogni-
tion and NLP, deep learning models are widely used in DTI prediction. DeepDTA [6] 
employed two convolutional neural network (CNN) models to extract features for deep 
representations of drugs and targets. Then, an fully connected network was utilized to 
predict the interaction of drug and protein representations. OnionNet [19] also utilized 
CNNs for drug and protein representations and so as to predict the binding affinity val-
ues. GANsDTA [20] used the generative adversarial networks (GANs) to learn deep 
representations for drugs and targets, and then predicted the binding affinity scores of 
drug–target pairs. DeepCDA [21] also was proposed for binding affinity score predic-
tion. It employed two CNNs to extract feature of drug and target. Then, long-short-term 
memory (LSTM) layers and a two-side attention mechanism were used in interaction 
learning to predict DTIs. Moreover, self-attention networks (SANs) also were applied to 
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generate deep representations of drugs and targets [22–24]. Especially, study [23] proved 
that SANs have the ability to capture the long-distance relation between atoms in drug 
and target sequences.

Despite these efforts, the existing methods have several areas for improvement:

•	 The existing encoding method labels molecular input character by character and 
it cannot encode fundamental chemical groups: (1) atoms with multiple charac-
ters in compounds, like ‘Br’, ‘Cl’, and (2) chemical functional groups, like ‘CC’, ‘OH’. 
These chemical groups are the determining part of chemical compounds and pro-
tein sequences. Therefore, the existing encoding method leads to the loss of essential 
chemical information.

•	 The existing deep models do not fully model different chemical correlations between 
atoms and atoms, atoms and chemical groups, chemical groups and chemical groups. 
Although CNNs can capture local features of these correlations, they failed to model 
long-distant atoms [23]. Besides, SANS focus on the overall input sentence, but they 
may overlook fine-grained information in drug and target sequences [25]. Thus, the 
existing deep model for DTI prediction need to improve.

In order to address the above problems, we introduce a new multi-scaled SAN model 
for drug–target binding affinity prediction based on multi-granularity representations 
in this work. Taking protein sequences and drug SMILES sequences as inputs, we first 
introduce a multi-granularity encoding method for them. The multi-granularity encod-
ing is built upon the BPE algorithm which is a widely used tokenization algorithm in 
field of NLP. BPE calculates the frequency of occurrence of each consecutive byte pair, 
and then forms a vocabulary from high-frequency byte pairs. The multi-granularity rep-
resentations are labelled by the vocabulary and then transmitted as inputs to our pro-
posed multi-scale SAN model. By assigning different window sizes to heads in SAN, 
the multi-scaled SAN is exploited to learn the multi-scaled local patterns and generate 
deep representations of drugs and targets. Finally, the prediction is made on fused deep 
representations.

To the end, we evaluate the effectiveness of our proposed model on benchmark 
datasets (Davis [26] and KIBA [27]). Experimental results demonstrate that our multi-
granularity multi-scaled model yields better accuracy over baselines and existing DTI 
deep models. Moreover, the experiment analyses reveal that both the multi-granularity 
encoding and multi-scaled features extracted by our multi-scaled SANs are beneficial to 
DTI prediction.

Methods
In this work, we propose a multi-granularity multi-scaled method for DTI prediction, 
as shown in Fig. 1. The proposed method includes four components: multi-granularity 
encoding, drug representation learning, protein representation learning, and the inter-
action learning part. Firstly, we introduce a multi-granularity encoding method for 
drug and protein input sequences. In this process, the input sequences are encoded by 
a multi-granularity vocabulary, which are generated by a segmentation method. Then, 
taken the multi-granularity representations as inputs, a multi-scaled SAN is proposed to 
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extract and fuse multi-scaled local features. Finally, the prediction is made on fused deep 
drug representations and deep protein representations by fully connected feed-forward 
networks.

Multi‑granularity encoding

The current labeling method is not sufficient to encode chemical sequences since it 
ignores the chemical textual information from chemical groups in drugs and proteins, 
for example, chemical functional groups ‘[C@@H]’,‘Br’. Thus, the intuitive way for rep-
resenting a chemical sequence is to find out the substrings in the sequence by a com-
putational method. Here, the substring is the chemical functional groups or atoms with 
multiple characters.

BPE [10] is a data compression method that can obtain high-frequency substrings to 
segment the sequence. In the field of NLP, BPE is widely used in different text tasks and 
as the first step to understand text sentences. BPE initializes the symbol vocabulary with 
the character vocabulary, and then it iteratively counts the frequency of adjacent charac-
ter pairs in the corpus and merges the pair with the highest frequency to a new symbol. 
Finally, the vocabulary update is stopped when the number of merge operations reaches 
a threshold.

In this work, we utilize the BPE algorithm to generate vocabularies for encoding molec-
ular inputs (SMILES or proteins). First, the segmentation datasets of drugs and targets 
are built and used to train BPE. Then, the BPE model trained by drug data would gener-
ate a vocabulary Vd with a threshold Td for drugs, and Vp and Tp for targets. T determines 
the size of the generated vocabulary which consists of the segmented inputs by BPE. 
For example, taken the ‘COC1=C(C=C2C(= C1)N=CN=C2NC3=C(C(=CC=C3)Cl)
F)CN4CCCC[C@@H]4C(=O)N’ as the input, the segmented outputs of BPE is shown in 
Table 1 with different T.

Fig. 1  Our proposed multi-granularity multi-scaled SAN model for DTI prediction
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Finally, a multi-granularity dictionary is constructed by assigning each group in the 
vocabulary a corresponding integer like the character-level dictionary in study [6]. Thus, 
an input sequence is labelled as multi-granularity representation X = {x1, x2, . . . , xi, . . .} 
where xi ∈ N ∗ and the length of X is varied, which depends on the length of the input 
sequence.

Multi‑scaled self‑attention model for drug–target binding affinity prediction

Our multi-scaled SAN is built upon Transformer block [28] which has shown excellent 
capability on sequence processing tasks. Given a drug multi-granularity representation 
Xd and protein multi-granularity representation Xp , we first adopt an input embedding 
module to integrate multiple embeddings. Then, for drug embedding Ed and protein 
embedding Ep , two multi-scaled SAN blocks are exploited to capture the local patterns 
features of drugs and proteins, respectively. Finally, an interaction block is proposed to 
fuse and extract interaction features from deep drug representations Rd and deep pro-
tein representations Rp . The final prediction y∗ is the output of the interaction block.

Input embedding

Given a multi-granularity drug input as

and a multi-granularity protein input as

we define a hyper-parameter l to restrict the max input length. Specially, ld restricts 
drug input Xd and lp restricts target input Xp . If the length of X is shorter than l, the 
lack value is setting as 0. According to Transformer [28] and MT-DTI [23], the input of 
multi-scaled SAN is the sum of token embedding Et of the input sequence and position 
embedding Ep of the input sequence, that is calculated as:

(1)Xd = {d1, d2, . . . , dld },

(2)Xp = {p1, p2, . . . , plp},

(3)Ed = Ed
t + Ed

p .

Table 1  Examples of segmented outputs of ’COC1=C(C=C2C(=C1)N=CN=C2NC3 
=C(C(=CC=C3)Cl)F)CN4CCCC[C@@H]4C(=O)N’ with different T 

T Segmented SMILES Sequence (Vocabulary)

1k COC1=C(C=C, 2C(=C1), N=C, N=C2, N, C3=C, (C(=CC=C,

3)C, l), F)C, N, 4, CCCC, [C@@H]4, C(=O)N

5k CO, C1=C, (C=C, 2, C(=C1), N=C, N=C, 2, N, C3=C, (,

C(=CC=C, 3)C, l), F, )C, N, 4, CCCC, [C@@H], 4, C(=O), N

25k C, O, C1=C, (C=C, 2, C(=C, 1), N=C, N=C, 2, N, C3,

=C, (, C(, =CC=C, 3, )C, l, ), F, )C, N, 4, CCCC,

[C@@H], 4, C(=O), N
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Here, the token embedding Ed
t ∈ R

ld×ed has a trainable weight Wd
t ∈ R

vd×ed . The vd 
is the vocabulary size of drugs and ed is the embedding length of drugs. The position 
embedding Ed

p ∈ R
ld×ed has a trainable weight Wd

p ∈ R
ld×ed . As for protein embedding,

where Ep
t ∈ R

lp×ep is the token embedding of Xp , E
p
p ∈ R

lp×ep is the position embedding 
of Xp and ep is the embedding size of protein sequence.

Multi‑scaled self‑attention block

Multi-head SAN is the main component of Transformer [28]. It performs multiple self-
attention modules on input expressions, then jointly pay attention to the information of dif-
ferent expression at different position. In this work, in order to generate a more informative 
deep representations of drugs and proteins, we adopt multi-scaled SAN to their embedings, 
which assign different window size to heads in multi-head SAN, that is formulated as,

where MSSAN(· ) denotes a multi-scaled self-attention block, as shown in Fig. 2. Ld and 
Lp are the hyper-parameters notating the number of multi-scaled SAN blocks.

Especially, suppose the input to multi-scaled SAN blocks is E. Our model first transforms 
input sequence into N subspace with different linear projections,

where 1 ≤ h ∈ N
+ ≤ N  is the index and Wh

∗ ∈ R
ed×dh∗ , the dh denotes the dimensionality 

of the hth head subspace. Then, we utilize a mask matrix Mh ∈ R
l×l for the hth head to 

achieve multi-scaled SAN. The output of hth head on multi-scaled SAN is calculated as,

(4)Ep = E
p
t + E

p
p .

(5)Rd = MSSAN (Ed , Ld),

(6)Rp = MSSAN (Ep, Lp).

(7)Qh
,Kh

,Vh = EWh
Q,EW

h
K ,EW

h
V ,

(8)headh = softmax
QhKhT

dh
+Mh Vh

,

Fig. 2  Our proposed multi-scaled SAN block
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where Mh is determined by a hyper-parameter named window size mh,

Then, the h heads are concatenated,

where conc(·) is a concatenation function. Next, a residual connection [29] and the layer 
normalization (LN(· )) [30] are employed,

Thus, the output of a multi-scaled SAN block is formulated,

where FFN(Z, 1) denotes one fully connected feed-forward layer (FCN) with ReLU acti-
vation [31] and Z as input. The hidden size of the FCN is ed.

Interaction block

The interaction block in this work is to combine deep drug and protein representations 
and predicts the binding affinity scores of drug–target pairs. Mathematically, firstly,

Next, 4 layers of FCN are employed to capture the interaction information from R.

where y∗ is the predicted binding affinity value of the drug–target pair.

Data and experiments
Datasets

Benchmark datasets for DIT prediction

We evaluated our proposed model on Davis [26] and KIBA [27] datasets because they 
are widely used in existing drug–target interaction studies. Specially, in order to ensure 
the uniqueness of drug input sequence, we only use Isomeric SMILES strings in this 
paper. The number of proteins, compounds and interactions of the Davis and KIBA data-
set are summarised in Table 2. In particular, the Davis dataset contains the 442 kinase 
proteins, their relevant inhibitors (68 ligands) and their respective dissociation constant 
( Kd ) value. The binding affinity scores of drug–target pairs were transformed Kd into log 
space pKd , as [6, 17], as follows,

(9)Mh
i,j =















−∞, j < (i −mh),

0, (i −mh) ≤ j ≤ (i +mh),

−∞, j (i +mh).

(10)heads = conc[head1, . . . , headh, . . . , headN ]

(11)Z = LN (heads + E).

(12)MSSAN (E, 1) = LN (Z + FFN (Z, 1)),

(13)R = conc[Rd ,Rp].

(14)y∗ = FFN (R, 4)

(15)pKd = −log10

(

Kd

1e9

)

.
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The used KIBA dataset comprised 229 proteins, 2111 drugs and their KIBA scores. Here, 
the KIBA scores measure the kinase inhibitor bioactivities as the binding affinity values 
in following experiments.

Segmentation dataset

We collect drug SMILES sequences from the National Center for Biotechnology Infor-
mation (NCBI) 1 and protein sequences from The Universal Protein Resource2. Finally, 
147546 SMILES sequences and 114500 protein sequences are collected as segmentation 
data to train the segmentation methods.

Experiment setup and metric

Table  3 summaries other hyper-parameter settings. We use five-time leave-one-out 
cross-validation to train our model and list the average results on test data. All models 
were trained on 1 NVIDIA 3080 GPU.

To measure the performance of our model, three metrics are included: mean squared 
error (MSE), Concordance Index (CI) and the r2m metric. MSE is the loss of the optimizer 
in the deep model.

(16)MSE =
1

n

n
∑

i=1

(y∗i − yi)
2

Table 2  The summary of the benchmark datasets

Proteins Compounds Interactions Training Data Test Data

Davis 442 68 30056 25046 5010

KIBA 229 2111 118254 98545 19709

Table 3  Summary of parameter settings

Parameter KIBA Davis

ld 80 36

lp 800 900

mh 0,1,2,3 0,1,2,3

ed 128 64

Ld 2 2

Lp 2 1

Hidden size in FFN 1024,1024,512,1

Epoch 300 300

Dropout 0.1 0.1

Optimizer Adam Adam

Learning rate 0.0001 0.0001

1  https://​pubch​em.​ncbi.​nlm.​nih.​gov/.
2  https://​ftp.​expasy.​org/​datab​ases/​unipr​ot/​curre​nt_​relea​se/​unipa​rc/

https://pubchem.ncbi.nlm.nih.gov/
https://ftp.expasy.org/databases/uniprot/current_release/uniparc/
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where the y∗ is the predicted binding affinity value, y is the ground-truth and n is the 
number of drug–target pairs.

CI is the probability of the predicted scores of two randomly chosen drug–target pairs 
in the correct order, as

where ti is the predicted value with larger affinity δi , tj is the prediction score for smaller 
affinity δj and N is a normalization constant. Moreover, the f(x) is a step function [16],

Then r2m metric [32, 33] is another widely used metric in this filed. Mathematically,

where r2 and r2
0
 are the squared correlation coefficient values between the observed and 

predicted values with and without intercept, respectively. Especially, the r2m value of an 
acceptable model should be larger than 0.5.

Experiments 1: Effects of the segmentation method

In this paper, the BPE algorithm is utilized as the segmentation method to learn the sub-
strings in drug SMILES and protein sequences. As seen in Table 1, the threshold T deter-
mines the degree of segmentation. The larger T in BPE indicates the more fine-grained 
and longer segmentation outputs. We first investigated the effects of T to DTI predic-
tion on KIBA and Davis dataset. We extract various multi-granularity representations 
by setting different T, and then build DeepDTA [6] models with these representations as 
inputs. As plotted in Figs. 3 and 4, the prediction results on KIBA and Davis dataset are 
demonstrated, respectively.
Discussion: For both KIBA and Davis dataset, the Td = 20k and Tg = 36k is superior to 

other settings. It is clear that when Td < 20k and Tg < 36k , the prediction quality goes 
up as T increases. Conversely when Td > 20k and Tg > 36k , the increase of T seems to 
cause performance degradation. One possible reason is that the segmented SMILE with 
Td = 20k and the segmented protein sequences with Tg = 36k include more chemical 
textual information for predicting DTI. As the result, Td = 20k and Tg = 36k in follow-
ing experiments.

Experiments 2: Encoding methods for DTI prediction

The starting point of our approach is an observation in encoding methods. Considering 
the improvements of existing character-based encoding methods, we adopt segmenta-
tion method to learn the chemical groups in drug and target sequences. Thus, in this 
subsection, we evaluate whether deep representations learned from multi-granularity 
representations contains more drug–target interaction information than deep rep-
resentations learned from character encoded representations, We also implemented 

(17)CI =
1

N

∑

δi>δj

f (ti − tj)

(18)f (x) =







0, if x < 0,

0.5, if x = 0,

1, if x > 0.

(19)r2m = r2 ∗ (1−

√

r2 − r2
0
),
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DeepDTA [6], as baseline, with multi-granularity representations and character encoded 
representations as inputs. Table  4 lists the average results of the drug–target binding 
affinity prediction on KIBA and Davis dataset.
Discussion: As seen, the multi-granularity encoding method improves the prediction 

quality in both two datasets, reconfirming the necessity of encoding the chemical groups 
in drug and protein sequences.

Fig. 3  Results of DeepDTA [6] model on the KIBA dataset with different multi-granularity representations as 
inputs. These multi-granularity representations are encoded by BPE algorithm with different threshold T. Here, 
Td is the threshold T for drug segmentation and Tp is the threshold T for protein segmentation

Fig. 4  Results of DeepDTA [6] model on the Davis dataset with different multi-granularity representations as 
inputs. These multi-granularity representations are encoded by BPE algorithm with different threshold T. Here, 
Td is the threshold T for drug segmentation and Tp is the threshold T for protein segmentation
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Experiments 3: Multi‑scaled SAN for DTI prediction

In this section, we conducted experiments about deep models based on multi-granular-
ity encoding. Table 5 gives the average test results on the drug–target binding affinity 
prediction tasks. One intuition of our work is to capture the local patterns in multi-gran-
ularity representations by multi-scaled SANs. To evaluate it, we implemented models 
with CNNs from DeepDTA [6], SANs from Transformer [28] which also employed in 
MT-DTI [23] and our multi-scaled SAN.
Discussion: As shown in Table 5, the multi-scaled SAN outperforms the SANs model, 

indicating that the local pattern information can raise the ability of SANs to capture the 
drug–target interaction information. Moreover, as all known, CNNs have the ability to 
capture the local features. According to Table 5, the multi-scaled model achieved higher 
results than CNNs model, revealing extracting local features by the dynamic weights of 
multi-scaled SANs is superior to fixed weight from CNNs.

Experiments 4: Comparison to existing approaches

In the end, we compare our multi-granularity multi-scaled SANs model to traditional 
methods, like KronRLS [16], SimBoost [17], and other recent deep sequence represen-
tation methods, like DeepDTA [6], MT-DTI [23], GANsDTA [20], CrossAttentionDTI 
[24]. Table 6 lists the results of these models on drug–target binding affinity prediction 
task.
Discussion: As seen, these sequence-based deep models improve prediction quality 

than transitional methods, reconfirming the effectiveness of modeling sequence infor-
mation. Besides, our proposed model improves CI to 0.890 on both KIBA and Davis 

Table 4  Results of DeepDTA (CNN model) on KIBA and Davis dataset with character-based and 
multi-granularity encoding. Especially, the character-based encoding methods is original labelling 
method in DeepDTA [6]

Bold values indicate the best results on the datasets

Encoding Method CI MSE r2m

KIBA Character Encoding 0.863 (0.002) 0.194 0.673 (0.009)

Multi-Granularity 0.875 (0.001) 0.185 0.696 (0.017)
Davis Character Encoding 0.878 (0.004) 0.261 0.630 (0.017)

Multi-Granularity 0.884 (0.005) 0.250 0.655 (0.019)

Table 5  Results of deep models on KIBA and Davis dataset with multi-granularity representations as 
inputs

Bold values indicate the best results on the datasets

Deep models CI MSE r2m

KIBA CNNs 0.863 (0.002) 0.194 0.673 (0.009)

SANs 0.875 (0.003) 0.179 0.691 (0.019)

Multi-scaled SANs 0.890 (0.002) 0.155 0.742 (0.010)
Davis CNNs 0.878 (0.004) 0.261 0.630 (0.017)

SANs 0.888 (0.004) 0.232 0.689 (0.007)
Multi-scaled SANs 0.890 (0.005) 0.233 0.681(0.014)
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dataset, and improve r2m to 0.742 and 0.681 on KIBA and Davis dataset, respectively. 
Thus, our model outperforms the recent sequence-based works, indicating the superior-
ity of the proposed approaches.

Discussion
DTI prediction is to identify the interactions between drugs and targets, which is a 
substantial task in the drug discovery field. Many studies proposed computation 
methods to reduce dependence on time, cost and traditional biological experiments. 
Based on these related works, we proposed a deep model for DTI prediction based 
on the multi-granularity encoding and the multi-scaled SAN model in this work. The 
main contribution of this paper can be summarized as follows.

•	 In order to encode fundamental chemical groups, a multi-granularity encoding 
method is introduced to label the molecular inputs of drugs and targets as the cor-
responding multi-granularity representations (Section Method).

•	 In order to model the multiple kinds of chemical correlations, a multi-scaled SAN 
model is proposed to learn the local patterns in drugs and targets by the dynamic 
weights (Section Method).

•	 Our proposed method achieves higher results on KIBA and DAVIS datasets, com-
pared to traditional methods and recent deep sequence representation methods 
(Section Experiments).

Via in-depth analyses, our work may contribute to subsequent researches on this 
topic: (1) the multiple encoding methods of SMILES sequence and protein sequence 
in DTI prediction as well as other bioinformatics tasks, (2) the learning method for 

Table 6  Results on KIBA and Davis of our proposed multi-granularity multi-scaled SANs model, 
transitional methods and existing deep sequence representation methods

Bold values indicate the best results on the datasets

Method Drug Protein Interaction CI MSE r2m

KIBA KronRLS [16] Pubchem Sim S-W – 0.782 (0.001) 0.411 0.342 (0.001)

SimBoost [17] Pubchem Sim S-W – 0.836 (0.001) 0.222 0.629 (0.007)

DeepDTA [6] CNNs CNNs Concatenation 0.863 (0.002) 0.194 0.673 (0.009)

MT-DTI [23] SANs SANs Concatenation 0.882 (0.002) 0.152 0.738 (0.006)

GANsDTA [20] GANs GANs Concatenation 0.866 (−) 0.224 0.675 (−)

CrossAttentionDTI 
[24]

Cross SANs Cross SANs Concatenation 0.874 (0.001) 0.175 –

Ours MSSAN MSSAN Concatenation 0.890 (0.002) 0.155  0.742(0.010)
Davis KronRLS [16] Pubchem Sim S-W – 0.871 (0.001) 0.379 0.407 (0.005)

SimBoost [17] Pubchem Sim S-W – 0.872 (0.001) 0.282 0.644 (0.006)

DeepDTA [6] CNNs CNNs Concatenation 0.878 (0.004) 0.261 0.630 (0.017)

MT-DTI [23] SANs SANs Concatenation 0.887 (0.003) 0.245 0.665 (0.014)

GANsDTA [20] GANs GANs Concatenation 0.881 (−) 0.276 0.653 (−)

CrossAttentionDTI 
[24]

Cross SANs Cross SANs Concatenation 0.876 (0.006) 0.244 –

Ours MSSAN MSSAN Concatenation  0.890 (0.005) 0.233  0.681 (0.014)
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local patterns in sequence, and (3) the representation learning of drug and target 
sequences.

Conclusion
In this paper, we investigate and propose effective approaches to improve drug–tar-
get binding affinity prediction from both encoding method and model architecture 
perspectives. As for the encoding method, we employ the BPE algorithm and seg-
mentation dataset to train a multi-granularity encoding method for drug SMILES 
and protein sequences. It contributes to encode atoms with multiple characters and 
chemical functional groups. Secondly, we build a multi-scaled SAN model for their 
multi-granularity representations by assigning various window size to heads in origi-
nal SANs. Experimental results demonstrate that the proposed approach not only is 
of benefit to predict DTI but also makes DTIs prediction surpass baselines on various 
metrics.

Our proposed method achieves the improvements by benefiting from the encoding 
method for chemical groups and the local patterns modeled by the representation learn-
ing model. In the encoding process, we collected a large of unlabeled data of drugs and 
targets to train the encoding method. Meanwhile, we found the lack of labeled data lim-
its the improvements of deep models to predict new DTIs. Thus, our future work may 
focus on the utilization of these unlabeled data, like the unsupervised learning method 
for DTI learning.
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