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Background
Inferring global topological patterns in multivariate data is a central step in understand-
ing dynamical systems such as a living cell. Knowledge of global patterns in the data can 
be used as a basis for deciding the underlying mechanisms. This is especially relevant 
to developing biological systems. Dynamical processes such as cell differentiation are 
revealed in lineages of cells progressing from an early state to a developed state. Sin-
gle-cell technologies that capture these dynamic processes enable our understanding of 
global topological patterns that can provide insight into developmental biology. The line-
ages of cells in a developing tissue are treated as trajectories in dynamical systems where 
each point represents a cell. Dozens of computational methods have been developed to 
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infer trajectories from single-cell data [1]. Most trajectory inference methods attempt to 
infer trajectory from a graph representation of the single-cell data. Graph-representation 
learning [2] obtains a low manifold representation of the dynamics in the single-cell data 
onto which trajectory inference can then be applied. LISA2 employs k nearest neigh-
bors (kNN) and builds a spanning tree with user specified root and leaves [3]. STREAM, 
a trajectory inference method that is applicable on both transcriptomic and epigenetic 
data employs principal graphs to trajectories [4]. Some methods incorporate additional 
information other than single-cell gene expression to infer trajectories. CellPath incor-
porates RNA velocity information and employs kNN graph to infer trajectories [5].

However, to our knowledge, none of the existing methods address the problem of 
determining the existence of a trajectory in observed data before attempting trajectory 
inference. To address this problem, we introduce graph-based statistics which quantify 
trajectory existence. Minimum-spanning-tree (MST) based statistics have been success-
fully used in analyzing global structures from large datasets. Krzewina and Saslaw pro-
vide a notable example in astronomy [6], where they introduced MST-based statistics 
that captured filamentary structures in galaxy data. Although our approach is also MST 
based, we design different statistics to emphasize the existence of a global trajectory 
structure. Graph-based statistics have connections to topological data analysis (TDA) 
[7], which makes use of topological algebra and are thus deterministic in nature. As a 
result, most of the methods are effectively applicable only to datasets that have clearly 
defined structures such as the torus. Although the use of statistics have been recently 
introduced in TDA, the direction is still vastly under-explored. In complementary, our 
work could help answer the statistical significance question for TDA.

Results
We present a framework using three graph measures to quantify statistical significance 
for the presence of trajectory in a given dataset. The framework takes as input a data 
matrix such as a single-cell RNA-seq dataset, in which each data point is a cell, and the 
genes are features. For each statistic, the framework gives as output a set of p-values, 
each corresponding to a given number of clusters k, such that a ≤ k ≤ b where a and b 
are minimum and maximum number of clusters, respectively. From the set of p-values, 
the median p-value measures the statistical significance for the presence of trajectory in 
that particular dataset. Figure 1 gives an overview of the framework and illustrates the 
three test statistics.

Next, we delve into a detailed description of the main steps that the framework under-
takes in computing the p-values.

For an input multivariate data set X, we first perform dimensionality reduction on the 
data. For each k in a given range, a permutation is performed to calculate the distribu-
tion of the test statistic under the null hypothesis that there is no trajectory in the data-
set. The next step calculates a p-value that quantifies the statistical significance for the 
presence of trajectory in the data.

To capture any global topological structure, the data are first partitioned into k homo-
geneous regions using k-means clustering. A weighted undirected graph G is created 
by the k cluster centers with edges connecting every pair weighted by their Euclidean 
distance. An MST H is then computed on graph G using Prim’s algorithm. We define 
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an MST H by a set of k nodes V = {v1, v2, . . . , vk} and k − 1 edges E = {(vi, vj)| there 
is an edge between nodes vi and vj in H, for i, j = 1, 2, . . . , k }. We now introduce three 
tree-based statistics to characterize the presence of trajectory in the data. These are 
the number of degree-one nodes T1(X) = D1(H) , the number of degree-two nodes 
T2(X) = D2(H) , and the length of a longest path T3(X) = Lmax(H) . Detailed definitions 
of the statistics and algorithms are given in the “Methods” section.

Evaluation on simulated and real single‑cell data

We demonstrate how the three test statistics report existence of trajectory in single-
cell RNA-seq datasets that are simulated or real observations. For single-cell data, the 
raw dimensionality is typically in the order of tens of thousands. We visualize the data 
using 2-dimensional principal component analysis (PCA) plots of the datasets. These 
2-dimensional data are the input to our analysis. We selected two real datasets, one with 
trajectory and the other one without trajectory [8–10]. Two simulated datasets were also 
similarly selected. For each dataset, a permutation test was performed to calculate the 
empirical distribution of the test statistic under the null hypothesis that there is no tra-
jectory in the dataset. We also selected an additional four simulated datasets to demon-
strate the effectiveness of our method in capturing different types of trajectories. The 
next step involved calculating a p-value that quantifies the statistical significance for the 
presence of trajectory in the data for every value of k, the number of clusters, ranging 
from 5 to 35 clusters. The choice of the range of clusters is critical. Using fewer num-
ber of clusters may result in high p-values even when there is a clear trajectory in the 
data. For instance, using three clusters would always result in an MST with the highest 
degree of linearity. Using too many clusters would also result in high p-values even when 
there is a clearly defined trajectory, since the high number of clusters would result in 
a highly branched MST. Empirical evidence shows that the number of clusters k, such 
that 5 ≤ k ≤ 35 , is reasonable enough to capture significant topological variations in the 
data. The optimal number of clusters in terms of separability may be too low to capture 
the statistical significance of the resulting topological structure. Additionally, since our 
goal is to capture homogeneous regions instead of clustering in terms of separability, 
we do not attempt to pre-determine the optimal number of clusters to build the MST 
on. Therefore, the results for each dataset consist of 31 p-values corresponding to the 
number of clusters in the range 5 ≤ k ≤ 35 , with each p-value quantifying the statistical 

Fig. 1  Overview of data transformation steps and trajectory inferential statistics. Characterization of the 
presence of trajectories is done in a vector space. For example, each point can represent a single cell and the 
axes expression levels of genes in single cells. The data are first clustered, and an MST is then built on cluster 
centers. The number next to each node is the degree of the node. The edges highlighted in orange form a 
longest path in the MST. Three statistics are obtained: (1) D1 , the number of leaf nodes is 4, (2) D2 , the number 
of degree-2 nodes is 4, and (3) Lmax , the length of a longest path in the MST is 7
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significance for the presence of trajectory at k number of clusters. The median of those 
p-values is then used to represent the overall statistical significance for the presence of 
trajectory.

Figures 2, 3, 4 and 5 show the empirical distributions of the statistics as well as the 
p-values on each of the four datasets. Figure 6 demonstrates the performance of the 3 
statistics on a more complex real fibroblast single-cell dataset. Figure 7 shows p-values 
on additional four simulated datasets with different types of trajectories.

The shapes of the distributions of all three test statistics under the null hypothesis that 
there is no trajectory in the data are roughly similar, with differences in the range and 
mean values for each statistic. The distributions shown for each statistic were computed 
at the number of clusters, k, that corresponds with the median p-value. The p-values of 
the four datasets are consistent with the survey results. Across all three statistics, the 
median p-values, as shown in the box plots, tend to be lower when there is a trajectory 
in the data, and much higher when the trajectory is not clearly defined. The p-values for 
the number of degree-two nodes statistic tend to be slightly lower in datasets that have 
no trajectory and slightly higher in datasets that have trajectory. These results demon-
strate the effectiveness of these MST-based statistics in reflecting nature and presence of 
trajectory in datasets.

In Fig. 2, the simulated dataset has no trajectory and the median p-values across all 
statistics are relatively high. The median p-values of each statistic are the output of the 
test: D1 has 0.815, D2 has 0.673 and Lmax has 0.664. The results are consistent with the 

Fig. 2  Statistics on simulated single-cell data with no trajectory. a Input simulated single-cell data. b Box 
plots of p-values obtained for each statistic on the dataset, with the median p-values measuring the overall 
statistical significance for the presence of trajectory. c–e are null distributions of three statistics obtained by 
permutation: c D1 , number of degree-1 nodes, at k = 16 , d D2 , number degree-2 nodes, at k = 8 , and e Lmax , 
length of a longest path, at k = 17 . The value of k for each statistic corresponds with the median p-value of 
the respective statistic. In each distribution, the observed test statistics are denoted by dashed orange lines
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expected output of the method. Since the data have no trajectory, the MST built on the 
cluster centers would be highly branched resulting in high p-values. The dataset pro-
vides a good example in which the strength of linearity of the resulting MST is lowest. 

Fig. 3  Statistics on simulated single-cell data with a trajectory. a Input simulated single-cell data. b Box plots 
of p-values for the three test statistics. c The null distribution of D1 at k = 29 . d The null distribution of D2 at 
k = 24 . e The null distribution of Lmax at k = 15 . Figure 2 explains the legend

Fig. 4  Statistics on noisy single-cell data with a cell-cycle trajectory. a Input cell-cycle single-cell data. b Box 
plots of p-values for the three test statistics. c The null distribution of D1 at k = 12 . d The null distribution of D2 
at k = 9 . e The null distribution of Lmax at k = 19 . Figure 2 explains the legend
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Since all the statistics can differentiate between extreme cases of linearity, it is no sur-
prise that the p-values are relatively high across all statistics. The null distributions of 
the statistics are relatively comparable, with a unimodal shape that roughly resembles 
binomial distributions. The main difference in the distributions is the range and mean 
values of the statistics.

In Fig. 3, the simulated dataset has a clearly defined trajectory. The median p-values of 
the D1 and D2 statistics are 0.013 and 0.008 respectively, which depicts a strong statisti-
cal significance for the presence of trajectory. The median p-value of the longest-path 
length statistic is comparably higher at 0.029. Even though the p-value is comparably 
higher, the statistic fairly captures the trajectory. The dataset provides an example in 

Fig. 5  Statistics on mesoderm development single-cell data. a Input mesoderm development single-cell 
data. b Box plots of p-values for the three test statistics. c The null distribution of D1 at k = 20 . d The null 
distribution of D2 at k = 24 . e The null distribution of Lmax at k = 11 . Figure 2 explains the legend

Fig. 6  Statistics on fibroblast reprogramming single-cell data. a Input fibroblast reprogramming single-cell 
data. 3-Dimensional scatter plot of the data; points are cells and axes are gene expression. b Box plots of 
p-values for the three test statistics
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which the degree of linearity of the resulting MST is relatively high. As expected, D1 and 
D2 statistics best capture the trajectory since they can best detect a high degree of linear-
ity. The shapes of null distributions across all three statistics are also comparable.

In Fig. 4, the dataset is real, single-cell data with a cell-cycle trajectory [11] but also 
strong noise. The trajectory is not observable on the data presented. The strength of 
linearity of the resulting MST is relatively low. Therefore, D1 and D2 statistics do not 
capture the trajectory well as depicted by the median p-values. The median p-values for 
D1 and D2 statistics are 0.555 and 0.337, respectively. On the other hand, the median 
p-value of Lmax is comparably lower at 0.160. Therefore, the statistical evidence for this 
true trajectory is low due to strong noise.

In Fig.  5, the dataset is real, mesoderm single-cell data with a development trajec-
tory [9, 10]. The strength of linearity of the resulting MST is high, with few branches. 
As expected all the statistics capture the trajectory, with relatively low median p-values. 

Fig. 7  Trajectory presence test statistics on four simulated single-cell data sets with various types of 
trajectory. For each dataset, three box plots of p-values obtained for each test statistic are shown, with the 
median p-values measuring the overall statistical significance for the presence of trajectory. a A multifurcating 
trajectory. b A converging-diverging trajectory. c A disconnected-looping trajectory. d Random data without 
a trajectory
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The median p-values of D1 and D2 statistics are 0.163 and 0.167 respectively. Lmax has 
the lowest median p-value at 0.027. All the statistics accurately captured the presence of 
trajectory in the dataset relatively to the noisy cell-cycle data in Fig. 4.

Figure 6 shows the three-dimensional scatter plot and the p-values of the three statis-
tics for the trajectory in single-cell data of fibroblast reprogramming. To obtain the data, 
single-cell RNA sequencing was performed at multiple time points during reprogram-
ming from mouse embryonic fibroblasts to neuronal cells [12]. The median p-values of 
0.065, 0.05 and 0.069 for D1 , D2 and Lmax , respectively, are relatively significant for all 
the statistics, demonstrating the effectiveness of the statistics in capturing trajectory 
presence.

We further demonstrate the effectiveness of the three trajectory presence statistics on 
four simulated single-cell datasets with three containing trajectories and one containing 
no trajectory (Fig.  7). Figure  7a shows a multifurcating trajectory. Our method effec-
tively captures this type of trajectory with median p-values of 0.048, 0.050 and 0.146 for 
D1 , D2 and Lmax , respectively, as given in the corresponding box plots. Even though the 
trajectory has some branches, a large enough number of clusters would capture the lin-
earity of the trajectory. Figure 7b shows a converging-diverging trajectory. The trajectory 
is captured with median p-values of 0.029, 0.029 and 0.060 for D1 , D2 and Lmax statistics, 
respectively. Figure  7c shows a disconnected-looping trajectory. The statistical signifi-
cance for the presence of this trajectory is the most significant, with a median p-value of 
0.002 for all the 3 statistics. The MST in that dataset is highly linear and resembles a path 
graph for the majority of k, the number of clusters that the MST is captured at. Figure 7d 
has no trajectory, and as expected, the median p-values for all the three statistics are 
relatively high, at 0.898, 0.769 and 0.884 for D1 , D2 and Lmax , respectively.

Discussion
Effectiveness of MST statistics

Our work aims to identify statistics that optimally characterize and distinguish the tra-
jectory structures of data between dynamic patterns and random data. All the three sta-
tistics are either maximized or minimized if and only if there is a linear trajectory. The 
statistics promote trajectory patterns, and non-randomness is between linear pattern 
and star trees, when there is maximum branching. Empirical studies revealed that the 
statistics may miss some non-random patterns that are not trajectories such as discrete 
clusters. There is, therefore, relatively high confidence that most of the non-random pat-
terns captured by the statistics are trajectories.

Clustering and median p‑value

We employ clustering to partition the data into homogeneous partitions, which are ideal 
for capturing trajectory-like structures. Intuitively, different numbers of partitions on 
the same data may capture distinct types of structures. However, when the trajectory is 
perfectly linear, different numbers of partitions capture the same underlying trajectory 
structure. By trying out different numbers of partitions, our empirical studies have dem-
onstrated that the median p-value is the best representative and more conservative value 
to quantify presence of trajectory. In the future, we plan to find a theoretical basis for the 
choice of the median p-value.
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Using k-means clustering to capture homogeneous regions in the data works but is 
not ideal. We hypothesize that the accuracy may be improved if the partitioned regions 
closely resemble each other.

Null distribution

Computing the empirical distributions of the statistics is CPU intensive due to permuta-
tion testing. Our future work will focus on optimizing the computation process as well 
as identifying analytical null distributions of the test statistics to gain both precision and 
efficiency.

Conclusions
We address the problem of statistical evidence for the presence of trajectory on multi-
variate data. We employed three statistics based on minimum spanning trees to differ-
entiate between data with and without a trajectory. We applied the framework on both 
real and simulated single-cell RNA-seq datasets and the empirical distributions of the 
statistics are comparable. The p-value measures the statistical significance for the pres-
ence of trajectory in a dataset. The effectiveness of the statistics in detecting trajectory 
existence lays the ground work for further development of efficient algorithms for high 
dimensional data such as those from single cell biology.

Methods
The method to obtain the p-values for each statistic is summarized in the algorithms 
below. The main entry point is the Test-Trajectory-Presence algorithm, which takes as 
input multivariate data and returns a set of p-values. The Test-Statistic algorithm calcu-
lates the test statistic. The Null-Distribution algorithm obtains the null distribution of 
the test statistic by permutation.
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The number of degree‑one nodes or leaves

The first statistic is the number of degree-one nodes or leaves in a tree graph, D1(H) , 
defined by

The degree of a node in a tree is defined as the number of edges incident on that node. 
We define a leaf as a node with degree one in a tree. We hypothesize that if there is a 
trajectory in the data, the MST built on the cluster centers would have fewer branches 
and thus tends to be more linear. Number of leaves is minimized when the tree is com-
pletely linear, when there are no branches in the tree. Such linear trees are also called 
path graphs. On the other end of the spectrum, the statistic is maximized when the 
tree is a star tree. In a tree with k nodes, the minimum number of leaves is two and the 
maximum number of leaves is k − 1 . As a result, the number of leaves statistic is quite 
effective in differentiating between the extremes of linearity of the tree. However, the 
statistic is not discriminating for some cases in the middle of the spectrum where there 
might be a noisy global linear trajectory but the number of leaves is not minimized. As 
MST H is derived from the input data X, we also call the corresponding test statistic 
T1(X) = −D1(H).

The number of degree‑two nodes

Another closely related test statistic is the number of degree-two nodes in a tree, D2(H) , 
defined by

Similar to the number of leaves, the statistic attempts to capture the linearity of the tree. 
When a tree with k nodes is linear and has no branches, the number of degree-two nodes 
is maximized at k − 2 . On the other hand, the statistic is minimized at 0, when the tree is 
a star tree with maximum branching. The statistic, however, is not theoretically optimal 
in characterizing tree linearity since there are varying degrees of linearity for which the 
statistic is minimized at 0. As a result, the statistic is sensitive only in the extreme cases 
when a trajectory in the data is highly linear or when there is no trajectory at all in the 
data. On the MST H, we also call the corresponding test statistic T2(X) = D2(H) , as H is 
derived from X.

(1)D1(H) = {v | degree(v) = 1, v ∈ V }

(2)D2(H) =
∣

∣{v | degree(v) = 2, v ∈ V }
∣

∣
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The length of a longest path

Another test statistic is the length of a longest path in the tree. We define a longest 
path as a simple path in the tree with the most number of edges. The length of a long-
est path is defined by the number of edges in the path:

where π ⊆ G is a path graph and also a subgraph of G. This statistic characterizes the 
linearity of a tree by capturing tree compactness. A more compact tree tends to have 
more branches and is representative of data with no trajectory patterns. The statistic is 
minimized at length two on a star tree; it is maximized at length k − 1 when the tree is 
a path graph of k nodes. On input data X which gives MST H, the third test statistic is 
T3(X) = Lmax(H).

Permutation test

The input data are permuted to generate a null distribution for each statistic. The 
p-values for all the statistics were calculated using one-tailed tests. We hypothesized 
that a smaller number of degree-one nodes in the MST implies the presence of strong 
dynamical patterns, and we therefore, performed a lower tail test to compute the 
p-values for the statistic. Conversely, we performed upper tail tests to compute the 
p-values for the number of degree-two nodes and longest-path length statistics.

Abbreviations
MST	� Minimum spanning tree
TDA	� Topological data analysis
PCA	� Principal component analysis
RNA	� Ribonucleic acid
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