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Abstract 

Background:  A recurring problem in image segmentation is a lack of labelled data. 
This problem is especially acute in the segmentation of lung computed tomography 
(CT) of patients with Coronavirus Disease 2019 (COVID-19). The reason for this is simple: 
the disease has not been prevalent long enough to generate a great number of labels. 
Semi-supervised learning promises a way to learn from data that is unlabelled and has 
seen tremendous advancements in recent years. However, due to the complexity of 
its label space, those advancements cannot be applied to image segmentation. That 
being said, it is this same complexity that makes it extremely expensive to obtain pixel-
level labels, making semi-supervised learning all the more appealing. This study seeks 
to bridge this gap by proposing a novel model that utilizes the image segmentation 
abilities of deep convolution networks and the semi-supervised learning abilities of 
generative models for chest CT images of patients with the COVID-19.

Results:  We propose a novel generative model called the shared variational autoen‑
coder (SVAE). The SVAE utilizes a five-layer deep hierarchy of latent variables and deep 
convolutional mappings between them, resulting in a generative model that is well 
suited for lung CT images. Then, we add a novel component to the final layer of the 
SVAE which forces the model to reconstruct the input image using a segmentation 
that must match the ground truth segmentation whenever it is present. We name this 
final model StitchNet.

Conclusion:  We compare StitchNet to other image segmentation models on a 
high-quality dataset of CT images from COVID-19 patients. We show that our model 
has comparable performance to the other segmentation models. We also explore the 
potential limitations and advantages in our proposed algorithm and propose some 
potential future research directions for this challenging issue.

Keywords:  Semi-supervised learning, Convolutional network, Image segmentation, 
COVID-19, Computed tomography
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Background
Modern deep learning based image segmentation techniques tend to require vast 
amounts of pixel-level labels to be effective. However, to obtain these labels, it is neces-
sary to have someone sit down and categorize every pixel in an image. This requires a 
massive amount of human effort. In the case of biomedical images, this is made worse 
by the fact that it is often necessary to have a panel of experts do the labelling. Therefore, 
any technique that has the potential to reduce the number of labelled images needed has 
immense value.

This issue can be seen in the diagnosis and prognosis of patients suspected to have 
the Coronavirus Disease 2019 (COVID-19), using computed tomography (CT) scans of 
their lungs. A pixel-wise segmentation of these scans, identifying healthy tissue as well 
as parts of the lungs affected by either common pneumonia or novel coronavirus pneu-
monia, can be a powerful tool for diagnosis as well as for identifying how much risk 
the patient is in, or will be in. Obtaining these segmentations, however, is immensely 
time-consuming for medical professionals to do by hand. In response to this, there has 
been work [1–3] in using deep learning models for image segmentation to automate this 
process. Despite there being massive datasets of CT images, these models can only be 
trained on CT images that have been hand labelled by skilled radiologists, severely limit-
ing the amount of usable data.

Semi-supervised learning has the potential to alleviate this issue. A semi-supervised 
model has the ability to learn from both unlabelled and labelled images simultaneously, 
drastically reducing the number of labelled images needed to achieve satisfactory per-
formance. For this reason, there has been a surge of research into semi-supervised learn-
ing in recent years. We will discuss some notable previous work in image segmentation, 
starting with several fully-supervised models and following with several semi-supervised 
models.

U-Net [4] is a deep learning based image segmentation model that has seen great suc-
cess on medical imagery tasks. It utilizes an encoder-decoder style architecture with skip 
connections between the encoder and the decoder. SegNet [5] has a similar encoder-
decoder style architecture, however instead of skip connections it uses max unpooling 
layers in the decoder. The MobileNetV2 [6], an image classification network, can be used 
as the U-Net’s encoder. When compared to much larger encoder networks, the Mobile-
NetV2 achieves only slightly worse performance while being much faster. Zhang et al. 
[1] have used several deep learning based, supervised segmentation models [4, 5, 7] to 
predict a segmentation for a CT image of a patient’s lungs. Fan et al. [3] and Chen et al. 
[8] both propose novel supervised segmentation models that have been handcrafted to 
perform well on chest CT images. Though impressive, these models are still limited by 
the number of CT images with pixel-level labels.

Moving away from fully supervised models, there is a plethora of papers proposing 
deep learning models that use image-level labels as a supervisory signal for the task 
of image segmentation. They do not utilize completely unlabelled images. This task is 
sometimes referred to as pure or true semi-supervision, and there are precious few pub-
lished papers that tackle it [9–19].

The above purely semi-supervised models tend to tackle the problem using some form 
of adversarial training, self-training, clustering or multi-view training. Many papers [10, 
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13, 16, 18, 19] use an adversarially trained discriminator deep convolutional network to 
ensure that the prediction of some segmentation model is realistic. This scheme allows 
them to train their network on unlabelled photos by leveraging the fact that, even if you  
do not know the ground truth, it should at least belong to the same distribution as the 
ground truth for the labelled images. The main drawback to this technique is that it can 
be very difficult to get a model with an adversarial component to converge to a solution.

Other papers [9, 14] use the fact that images–labelled or unlabelled–that have been 
determined to be similar by some deep learning-based, unsupervised clustering algo-
rithm should also be close to each other in various latent and feature spaces. These tech-
niques are dependent on how you define “close” which can be quite difficult for data 
that is as high dimensional as images, causing the performance of these models to be 
underwhelming.

Pseudo-labelling [20] is a commonly used semi-supervised learning technique where 
a fully supervised deep network is trained and then used to make predictions on some 
unlabelled data. The network is then retrained using the model’s most confident pre-
dictions as labels. However, if this prediction is of low quality, then this scheme will 
continuously reinforce this bad behaviour to disastrous effect. As a result, pseudo-
labelling is typically considered the least effective, but simplest, semi-supervised tech-
nique. There are several papers [3, 12] that use this general scheme with some significant 
modifications.

As with this paper, many papers [2, 3] seek to utilize unlabelled CT images from 
COVID-19 patients. Shan et al. [2] use an intriguing human-in-the-loop strategy. This 
strategy entails training a deep learning-based, segmentation network on a small dataset 
of pixel-wise labelled data, then using this network to make prediction on a large unla-
belled dataset. These predictions are then refined by a skilled radiologist and included in 
the pixel-level labelled dataset. The network is retrained, and this process repeats until 
satisfactory performance is achieved. Though the labelling effort is significantly reduced, 
this technique still requires some manual labelling effort and many research groups will 
simply not have access to a radiologist.

Fan et  al. [3] use pseudo-labelling in its most rudimentary form. Despite this, they 
achieved a sizable increase in segmentation performance compared to their fully super-
vised baseline. This makes it quite motivating to employ a more sophisticated semi-
supervised technique, as pseudo-labelling is far from capable of making full use of these 
unlabelled images. Fung et al. [21] proposed a model that does just this. They add a self-
supervised pre-training step to Fan et al.’s InfNet model. During this step, the CT images 
are obscured with a black rectangle and the model is trained to reconstruct the full CT 
image. Though this method was able to improve on the InfNet, it is trained in two sepa-
rate steps and a semi-supervised technique that can be trained end-to-end may improve 
the performance even further.

Deep generative models offer an elegant framework for semi-supervised models. 
In essence, they treat the image and label as two random variables in a graphical 
model and seek to model both using recent advances in variational inference. Some 
notable examples are the M2 variational autoencoder [22] and the auxiliary deep 
generative model [23]. Unfortunately, the vast majority of this research has been in 
the domain of image classification, where the label is simply a single category for 
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each image. The assumption can be made that each of these categories are equally 
likely to occur. Even though this assumption is very close to the reality, it still allows 
for easy to compute, closed-form calculations. Modern deep generative-based, semi-
supervised techniques rely heavily on this fact.

A similar assumption cannot be made in the case of image segmentation. This 
is for several critical reasons. First, due to the fact that each pixel has a label, the 
number of unique segmentations is exponentially larger than the number of unique 
image-level labels. Furthermore, very few of these unique segmentations are realis-
tic. For example, a set of pixels that have been give the dog label but are in the shape 
of a human is not a realistic segmentation. This is important because it completely 
removes our ability to assume that each unique segmentation is equally likely to 
occur. Finally, the label for each pixel is heavily dependent on the labels of the other 
pixels in the image, removing the possibility of making any independence assump-
tions. For these reasons, modern semi-supervised techniques tend to fall flat when 
used for image segmentation.

Though problematic, the issues mentioned above are not at all new. The same 
issues are encountered while trying to find a distribution capable of modelling 
images. The variational approach [24, 25] handles this by finding a latent representa-
tion of the image as well as a deep learning-based, functional mapping between the 
image and its latent representation. You are then free to make simplifying assump-
tions about the latent space’s distribution without making any assumptions about the 
images’ distribution. In this study, we utilize this approach by finding a latent repre-
sentation of both the original CT image, and  its segmentation. Because we want our 
model to learn to segment images even when the ground-truth segmentation is not 
present, we assume that the original CT image is dependent on the segmentation. 
By doing this, in the absence of the ground-truth segmentation, the model learns to 
predict a segmentation that is useful for the reconstruction of the original CT image.

Though the original variational autoencoder (VAE) [24] could be used for this 
task, it lacks the expressivity to sufficiently model large datasets. This is particularly 
true when the dataset is one of images. The ladder variational autoencoder (LVAE) 
[26] greatly increases the expressivity of the VAE by introducing a hierarchy of latent 
variables and a novel way of training such a hierarchy. In this study, we modify the 
LVAE by sharing several key weights across the inference and generative network. 
Additionally, we replace all functional mappings in the LVAE with deep convolu-
tional networks that have been handcrafted to work well on CT images. We name 
the resultant model the shared variational autoencoder (SVAE).

In their original forms, the VAE, LVAE and SVAE are designed to take an image as 
input and reconstruct that image as its output. We modify the SVAE to output both 
a segmentation mask and four CT images, one for each of the segmentation labels. 
Then, we reconstruct the original CT image by stitching together the four CT images 
based on the segmentation. We name the resultant model StitchNet. In summary, we 
develop a novel deep generative model called the SVAE. Then, using the SVAE, we 
create a semi-supervised model called StitchNet and test it on a high-quality dataset 
of CT images from COVID-19 patients.
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Results
Dataset

For the evaluation of StitchNet, the Zhang et al.’s [1] China Consortium of Chest CT 
Image Investigation (CC-CCII), with several modifications, was used. CC-CCII con-
tains CT images from 2,778 patients, totalling 444,034 images in total. Eighty-five 
percent of the patients were from the Chinese cities of Yichang, Hefei or Guangzhou 
and the remainder were from an international cohort. The patients either had com-
mon pneumonia (CP), novel-coronavirus pneumonia (NCP), or were part of the con-
trol group. In our dataset, we excluded the patients with CP.

CC-CCII contained 750 segmentation masks, which correspond to 150 patients 
with NCP. The segmentation was completed by five senior radiologists with over 
25 years of experience. They segmented three labels: health lung field, ground-glass 
opacity and consolidation.

We will now discuss the data pre-processing and cleaning procedure we employed. 
We segmented the lung field in each CT image using the U-Net semantic segmenta-
tion model. The opening and closing morphological transformations were used for 
noise reduction. The images were then cropped to only include lung field. The result 
is shown in Fig. 1. Before being used in our models, all images are resized to a reso-
lution of 352⨯352 and the pixels values are scaled to be between zero and one. We 
randomly separate 60% of the labelled data into the training set, 20% into the testing 
set and 20% validation set. We do this by patient, not by image, so that all of a single 
patient’s CT images will be in exactly one of the three sets, thus avoiding data leakage.

Evaluation metrics

For each image, we employ the following four evaluation metrics: the Intersection-
over-Union, F1-Score, Recall and Precision.

(1) The Intersection-over-Union (IoU): The Intersection-over-Union was used to 
measure the overlap between the ground-truth infected region (T) and the predicted 
infected region (P) in a way that controls for the size of the infected region.

Fig. 1  Before (top) and after (bottom) data pre-processing
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(2) The F1-Score (F1): The F1-Score, also called the Dice Coefficient, was used to meas-
ure the overlap between the ground-truth infected region (T) and the predicted infected 
region (P).

(3) Recall (Rec.): The Recall, also called Sensitivity or True Positive Rate, was used to 
measure what proportion of the ground-truth infected region (T) was present in the 
predicted infected region (P).

(4) Precision (Prec.): The Precision was used to measure what proportion of the pre-
dicted infected region (P) was present in the ground-truth infected region (T). These  
four metrics are defined in Eq. (1).

where | | is the operator that calculates the number of pixels in the given region, ∩ is the 
intersection operator, and ∪ is the union operator.

We calculate the above metrics for each CT image and average the results. The Mean 
and Standard Deviation (STD) are defined as follows:

Let M((x, y)) be the value of the relevant evaluation metric calculated for the data point 
(x, y). Then let Metric = {M((xi, yi))}(xi ,yi) ∈ DVal , where DVal is the validation dataset.

(1) Mean: Then the Mean is simply 
Metric

M((xi ,yi))
|Metric| .

(2) STD: The STD is 
√

1
|Metric|

∑

Metric

(M((xi, yi))− µ)2 , where µ is the mean.

Performance comparison

We compared StitchNet to SegNet and to U-Net with a MobileNetV2 encoder. The 
hyperparameters used to train StitchNet can be found in Additional file 1: Table S1. The 
results on the test set are shown in Table 1 with some example prediction shown in Fig. 2. 
The results on the validation and training set can be found in Additional file 1: Tables S2 
and S3. Although performance of StitchNet and U-Net are comparable when predicting 
the ground glass opacity label, StitchNet’s precision is higher whereas U-Net’s recall is 
higher. This seems to indicate that StitchNet makes more conservative predictions than 
U-Net. The SegNet fails to predict any lesions, predicting only the background class. This 
is likely due to the fact that its backbone is based off the outdated VGG16 network [27], 
whereas StitchNet and U-Net’s backbone uses the more sophisticated MobileNetV2.

Discussion
The performance of StitchNet is comparable to that of the fully supervised U-Net model 
on the ground-glass opacity and consolidation lesion. This indicates that StitchNet is 
learning from the labelled data, but not the unlabelled data. When trained on only the 
labelled data, StitchNet predicts styles that are clearly associated with the appropriate 
lesions, effectively allowing you to see what a CT image would look like if it were entirely 
filled with the associated lesion. Because of this, StitchNet seems to perform exactly 
as expected on the labelled data. When trained on only the unlabelled data, StitchNet 
learns unique and meaningful styles, learning a meaningful clustering of the data. This is 
exactly what we would expect from training with no labelled data.

(1)IoU =
|T ∩ P|

|T ∪ P|
, F1 =

2 · |T ∩ P|

|T | + |P|
, Rec. =

|T ∩ P|

|T |
, Prec. =

|T ∩ P|

|P|
,
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Based on these two observations, when trained on both labelled and unlabelled data, 
StitchNet should learn to predict styles that are associated with lesions, for both the 
labelled data and the unlabelled data. StitchNet achieves this on the labelled data, how-
ever, on the unlabelled, all the styles are identical, and the segmentations are the exact 
same for every image. This seems to indicate that the fundamental idea is sound, but that 
further work needs to be done before StitchNet can outperform the supervised network.

Furthermore, we note that the standard deviation of StitchNet model is consistently 
lower than that of U-Net model. This is due to the fact that the model is able to rein-
force the predictions it makes on the labelled data by training on the unlabelled data, 
resulting in a model that performs more consistently on unseen data.

Conclusion
In conclusion, we proposed a novel generative model called the shared variational 
autoencoder (SVAE), making a theoretical contribution to the field of generative model-
ling by introducing shared weights between the encoder and the decoder. We used this 
model to propose StitchNet, a model capable of tackling the challenging task of semi-
supervised CT image segmentation. While the theoretical foundation of StitchNet is 
sound, further work will be needed before it can make full use of unlabelled data.

Methods
Shared variational autoencoder

In this section we will introduce the theory, implementation and optimization of the 
SVAE. Suppose we have a dataset, D = {x(i)}N−1

i=0  , of N images. Assuming that these 
images are independent and identically distributed  (i.i.d). samples from some ground-
truth distribution, p(x), we wish to approximate that ground truth distribution. This 
allows us to sample from our approximation, synthesizing new images. The Ladder Vari-
ational Autoencoder (LVAE) [26] is a recently proposed model that has been shown to 
be highly effective at modelling such distributions. Here we will briefly summarize their 
work and discuss some potential issues. The LVAE assumes that the data is generated in 

Table 1  Quantitative results of ground-glass opacity (GGO), consolidation (CON), background, and 
the overall average on the test dataset

Lesion Method IoU F1 Recall Precision

GGO U-Net 0.391 ± 0.280 0.499 ± 0.32 0.608 ± 0.358 0.47 ± 0.326

GGO SegNet 0.004 ± 0.027 0.007 ± 0.044 0.012 ± 0.087 0.009 ± 0.071

GGO StitchNet 0.358 ± 0.257 0.471 ± 0.303 0.517 ± 0.331 0.489 ± 0.328

CON U-Net 0.404 ± 0.331 0.49 ± 0.368 0.616 ± 0.378 0.485 ± 0.38

CON SegNet 0.021 ± 0.113 0.027 ± 0.137 0.057 ± 0.227 0.021 ± 0.114

CON StitchNet 0.318 ± 0.315 0.397 ± 0.361 0.539 ± 0.411 0.387 ± 0.369

Background U-Net 0.983 ± 0.023 0.992 ± 0.012 0.987 ± 0.02 0.996 ± 0.006

Background SegNet 0.97 ± 0.044 0.984 ± 0.024 0.999 ± 0.009 0.971 ± 0.043

Background StitchNet 0.985 ± 0.021 0.992 ± 0.011 0.992 ± 0.011 0.993 ± 0.014

Overall U-Net 0.593 0.66 0.737 0.65

Overall SegNet 0.332 0.339 0.356 0.334

Overall StitchNet 0.554 0.62 0.683 0.623
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a hierarchical sampling process. Specifically, it assumes that, to generate an image, we 
first take a sample from a unit Gaussian distributed-latent variable, zn . A function is then 
applied to that sample, outputting the parameters to a diagonal Gaussian distributed-
latent variable, zn−1 . This will repeat for n levels, with the last output distribution being 
a distribution for each pixel in the image (their work used a Bernoulli distribution). This 
allows them to assume independence between the pixels when conditioned on the latent 
variables. This model is denoted by pθ.

The LVAE uses variational inference to learn both the model pθ and an approximate 
posterior to pθ , qφ . In previous work, qφ will infer the value for z1 from x and z2 from 
z1 . The LVAE differs from this in that their qφ completes a deterministic down pass, and 
then each z is inferred from the intermediate layers of this down pass. The dependencies 
between latent variables are recovered by combining the inferred distributions’ param-
eters for the latent variables with the generative model’s predicted distributions’ param-
eters. This is depicted in Fig. 3a.

Though the LVAE is quite interesting, it was not designed to work well on large, 
complex datasets such as of CT images. In this study, we seek to modify the LVAE 
so that it will work well on such a dataset. We do this by replacing the mappings 
between latent variables in the LVAE with deep convolutional layers that have been 
handcrafted to work well on CT images. Now, to find z1 given z2 , we apply a decon-
volutional layer to d2 to get d1 and then apply many convolutional layers to d1 to 
get z1 . We note that, in both pθ and qφ , we have a mapping between dn and zn . We 
hypothesize that this mapping serves the exact same purpose in both, and that 

CT-Image Ground-Truth U-Net SegNet StitchNet
Fig. 2  Visual comparison of the segmentation results, where the green and blue labels indicate GGO and 
Consolidation, respectively
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having both share weights would increase performance. With this final change, we 
arrive at the shared variational autoencoder (depicted in Fig. 3b)

Here, we will describe the deep convolutional layers used in the SVAE model. Sev-
eral building blocks of the model are described in Fig. 4. When the number of filters 
is greater than 64, linear bottleneck convolutions [28] are used instead of the tradi-
tional convolution. Batch Normalization [29] followed by the ReLU [30] activation 
follows every convolutional layer and is suppressed for clarity. SVAE has five layers 
of latent variables, opposed to the two depicted in Fig.  3b. The dimensionality of 
these latent variables and their deterministic expansion is shown in Table 2. We use 
the intermediate and output layers of MobileNetV2 [28] with the image, x, as input 
to obtain d1, d2, ...d5 . The mappings between variables are depicted in Fig. 5.

StitchNet

In this section we will introduce the theory, implementation and optimization of the 
StitchNet. Suppose we have a dataset, DUN = {(x(i))}N−1

i=0  , of N CT images, where x(i) 
denotes the ith CT image in the dataset. We will assume that x(i) is a high-dimen-
sional vector with entries ranging from zero to one. Suppose that we have a dataset, 
DLAB = {(x(i), y(i))}M−1

i=0  , of M CT images along with their associated segmentation, 
y(i) . We will assume that y(i) is of the same dimension as x(i) and has entries that 

d2

d1

x

z2

z1

z2

z1

x

(a) Ladder Variational Autoencoder:
Dashed lines indicate a combination of
parameters

d2

d1

x

z2

z1

z2

z1

d2

d̃1

d1

x

(b) SVAE: Shared weights are depicted
with blue arrows

Fig. 3  A comparison between the LVAE and our SVAE

+

conv3x3

(a) ResBlock : A residual convolutional
block that keeps the dimensions and filters
the same

conv3x3

resblock x3

(b) Smooth: A block that chains together
three ResBlocks. LightSmooth uses only
one ResBlock

Fig. 4  A description of the building blocks of the SVAE
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belong to the set {0, 1, 2, 3} . Here, if the nth entry of y(i) is equal to zero, then this indi-
cates that the nth entry of x(i) is part of the background of the CT image Furthermore, 
one, two and three correspond to the healthy tissue, ground-glass opacity and con-
solidation class, respectively. This is depicted in Fig. 6a.

We wish to obtain a model capable of taking a CT image (x) and outputting an 
accurate segmentation (y). In other words, we wish to approximate the ground-truth 
p(x|y) conditional distribution. Though not typically phrased in these terms, super-
vised deep-learning techniques do this by introducing the following approximation to 
this distribution:

where CAT is the Categorical distribution and fθ is some complex function. Due to 
their tremendous success on image data, fθ is typically chosen to be a convolutional 
neural-network.

(2)pθ (y|x) = CAT(y|fθ (x)),

Table 2  The dimensionality of the five latent variables

Level 0 denotes the input image x

Level z d

0 (352,352,1) NA

1 (176,176,1) (176,176,32)

2 (88,88,1) (88,88,64)

3 (44,44,1) (44,44,128)

4 (22,22,1) (22,22,256)

5 (11,11,1) (11,11,512)

d̃i
(h,w, f) Conv

Transpose
4x4

(2h, 2h, f) Light
Smooth

(2h, 2w, f)
di−1

(a) An illustration of the function mapping di to di−1

di
(h,w, f) Conv

3x3

(h,w, f
2 ) Light

Smooth

(h,
w,

f
2
)

(h,w, f
2 )

Conv
3x3

(h,w, f
4 ) Light

Smooth

(h,w, f
4 ) Conv

3x3
(h,w, 1)

Conv
3x3

(1, 1, f
4 ) Light

Smooth

(h,w, f
4 ) Conv

3x3 (h,
w,

1)

zi

(b) An illustration of the function mapping d̃i to zi. The upper branch outputs the
µ parameter and the lower branch outputs the σ parameter of a diagonal Gaussian
distribution

zi
(h,w, 1) Conv

3x3

(h,w, f
2 ) Light

Smooth

(h,w, f
2 ) Conv

3x3

(h,w, f) Light
Smooth

(h,w, f)
Smooth

(h,w, f)
di

(c) An illustration of the function mapping zi to di

Fig. 5  An illustration of the mappings between the SVAE’s variables. We denote the output of each block as 
(height , width, filters)
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These supervised techniques then aim to find the parameters θ that best explains the 
data we are given. This is done by maximizing the following objective using a numerical 
approximation algorithm such as gradient descent:

Phrased in this way, the drawback to these supervised techniques is obvious. They can 
only use the labelled dataset DLAB . To remedy this, instead of approximating p(y|x), we 
can model joint distribution p(x, y) and derive the conditional distribution p(y|x) from 
it. This allows us to use both, DLAB and DUN by treating y as a latent variable in the latter 
case.

To effectively model p(x, y), we will assume that x and y are dependent on the hierarchy 
of latent variables from the SVAE, which here we will simply denote as z. Now we will 
model p(x, y, z). Furthermore, we will assume that each of the data points, (x(i), y(i), z(i)) , 
were generated in the following way:

where p(z) are assumed to follow the distribution from the SVAE and pθ (·) is assumed to 
be some distribution parameterized by θ (depicted in Fig. 7).

To generate x we will first generate four stylistic representations–referred to as b, h, 
g and c–of x. These stylistic representations of x show you what the image would look 
like if the entire lung were background, healthy, ground-glass opacity and consolidation, 
respectively. We then reconstruct x by choosing the pixel from the style associated with 
the label predicted by y. Examples of these styles are shown in Fig. 6b.

We will use this, as well as the following definitions, to define pθ:

(3)J =
∑

DLAB

log pθ (y
(i)|x(i)).

(4)z(i) ∼ p(z), y(i) ∼ pθ (y|z
(i)), x(i) ∼ pθ (x|z

(i), y(i)),

x

y

(a) A CT image (x)
with its segmentation
(y)

h g c

y x

(b) Stylistic generation. The healthy (h), ground glass
opacity (g) and consolidation (c) styles are on the top
row, respectively

Fig. 6  Visualization of the data and StitchNet’s outputs. For segmentations, ground glass opacity is shown in 
green, consolidation in blue and healthy tissue in black
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where BETA denotes the Beta distribution and αθ (z) and βθ (z) are some complex func-
tions parameterized by θ which outputs the parameters of the beta distribution.

Finally, we define pθ as

where πθ (z) is some complex function parameterized by θ . We now have a genera-
tive model that is well suited to CT image segmentation (depicted in Fig. 7b, c). What 
remains is outlining an effective means for finding the values of θ that best explains our 
observed data. Concretely, we wish to solve

The existence of latent variable, and, by extension, the need to integrate over them, 
makes this objective completely intractable. We instead optimize a variational lower 
bound on the log likelihood of pθ . Concretely, we optimize,

Though qφ can be any function of the latent variables, this lower bound is exactly equal 
to the true log likelihood when qφ is equal to p′θ s posterior, pθ (z|x, y) . Therefore, qφ has 
the interpretation of being an approximation to the posterior. When we implement the 
qφ , we will keep this fact in mind.

(5)

pθ ({b, h, g , c}|z) = BETA({b, h, g , c}|αθ (z),βθ (z)),

�(y, b, h, g , c) =











b if y = 0,
h if y = 1,
g if y = 2,
c if y = 3,

(6)
pθ (y|z) = CAT(y|πθ(z)),

pθ (x|y, b, h, g , c) = BETA(x|�(y, b, h, g , c)),

(7)

maxθ
∑

DUN
log pθ (x

(i))+
∑

DLAB
log pθ (x

(i), y(i))

=
∑

DUN
log

∫

z

∑

y pθ (x
(i), y, z)dz

+
∑

DLAB
log

∫

z

pθ (x
(i), y(i), z)dz.

(8)
log pθ (x

(i)) ≥ Eqφ(z,k|x(i))

[

log
pθ (x

(i),y(i),z)

qφ(z|x(i))

]

,

log pθ (x
(i)) ≥ Eqφ(z|x(i))

[

log

∑

y pθ (x
(i),y,z)

qφ(z|x(i))

]

.

z

y x

(a) Generative Model

z

b h g c

y x

(b) Updated Generative Model

x

z

(c) Inference Model
Fig. 7  Hierarchical graphical models. Latent, partially observed and observed variables are shown with clear, 
half-filled and filled, respectively. Arrows and diamond nodes represent functional mappings
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We can further increase tractability by approximating the calculation of the expec-
tation over qφ . We do this by taking a Monte-Carlo sample from qφ and evaluating 
the expectation with just this sample. This approximation can be made more precise 
by taking multiple samples and averaging the expectation, but, for our work, we used 
only one. With this, we arrive at our final objective, which can be optimized via any 
gradient descent algorithm.

Abbreviations
COVID-19	� Coronavirus disease 2019
CT	� Computed tomography
SVAE	� Shared variational autoencoder
LVAE	� Ladder variational autoencoder
VAE	� Variational autoencoder
CC-CCII	� China Consortium of Chest CT Image Investigation
CP	� Common pneumonia

NCP	� Novel-coronavirus pneumoniaSupplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04878-6.

Additional file 1: Table S1. The chosen hyperparameters used to train StitchNet. Table S2. Quantitative results of 
ground-glass opacity (GGO), consolidation (CON), background, and the overall average on the validation dataset. 
Table S3. Quantitative results of ground-glass opacity (GGO), consolidation (CON), Background, and the overall aver‑
age on the training dataset.

Acknowledgements
We greatly thank Dr. Guangyu Wang for creating, and making publicly available, the high quality CC-CCII dataset.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 23 Supplement 7, 2022 Selected articles from the 
20th Asia Pacific Bioinformatics Conference (APBC 2022): bioinformatics. The full contents of the supplement are avail‑
able online at https://​bmcbi​oinfo​rmati​cs.​biome​dcent​ral.​com/​artic​les/​suppl​ements/​volume-​23-​suppl​ement-7.

Author contributions
JZ: Designed and implemented the algorithm, drafted the manuscript; DLXF and QL: performed data analysis and 
participated in algorithm design; CK-SL and PH supervised the project and revised the manuscript. All authors read and 
approved the manuscript.

Funding
Not applicable.

Availability of data and materials
The CC-CCII dataset used for our analysis can be found at http://​ncov-​ai.​big.​ac.​cn/​downl​oad?​lang=​en. All code neces‑
sary for the implementation of StitchNet and the replication of our results can be found at https://​github.​com/​Judah​
Zammit/​stitc​hnet.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

(9)

Eqφ(z|x(i))

[

log
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qφ(z|x(i))

]

≈ qφ(z
(i)|x(i))

[

log
pθ (x

(i),y(i),z(i))

qφ(z|x(i))

]

≡ JLAB,

Eqφ(z|x(i))

[

log

∑

y pθ (x
(i),y,z)

qφ(z|x(i))

]

≈ qφ(z
(i)|x(i))

[

log

∑

y pθ (x
(i),y,z(i))

qφ(z|x(i))

]

≡ JUN ,

where z(i) ∼ qφ(z|x
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