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Abstract 

Background:  Pathway enrichment analysis is extensively used in high-throughput 
experimental studies to gain insight into the functional roles of pre-defined subsets of 
genes, proteins and metabolites. Methods that leverages information on the topology 
of the underlying pathways outperform simpler methods that only consider pathway 
membership, leading to improved performance. Among all the proposed software 
tools, there’s the need to combine high statistical power together with a user-friendly 
framework, making it difficult to choose the best method for a particular experimental 
environment.

Results:  We propose SEMgsa, a topology-based algorithm developed into the 
framework of structural equation models. SEMgsa combine the SEM p values regarding 
node-specific group effect estimates in terms of activation or inhibition, after statisti-
cally controlling biological relations among genes within pathways. We used SEMgsa 
to identify biologically relevant results in a Coronavirus disease (COVID-19) RNA-seq 
dataset (GEO accession: GSE172114) together with a frontotemporal dementia (FTD) 
DNA methylation dataset (GEO accession: GSE53740) and compared its performance 
with some existing methods. SEMgsa is highly sensitive to the pathways designed 
for the specific disease, showing low p values ( < 0.001 ) and ranking in high positions, 
outperforming existing software tools. Three pathway dysregulation mechanisms were 
used to generate simulated expression data and evaluate the performance of methods 
in terms of type I error followed by their statistical power. Simulation results confirm 
best overall performance of SEMgsa.

Conclusions:  SEMgsa is a novel yet powerful method for identifying enrichment 
with regard to gene expression data. It takes into account topological information 
and exploits pathway perturbation statistics to reveal biological information. SEMgsa 
is implemented in the R package SEMgraph, easily available at https://​CRAN.R-​proje​ct.​
org/​packa​ge=​SEMgr​aph.

Keywords:  Pathway enrichment analysis, Pathway topology, SEM, SEMgsa, Sensitivity, 
Prioritization, Type I error, Power
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Background
Biomedical research has been transformed by recent advances in high-throughput tech-
nologies, enabling extensive monitoring of complex biological systems. As a result, new 
methodological developments have emerged, most notably the adaptation of systems 
perspectives to analyze biological systems. Pathway enrichment has become a key tool in 
the analytic pipeline for Omics data and has been effectively used to generate novel bio-
logical hypotheses and determine if specific pathways are linked to specific phenotypes. 
In the literature, dozens of strategies have been developed, varying in model complexity 
and effectiveness.

Earlier methodologies, such as over-representation analysis (ORA) [1] and gene set 
analysis (GSA) [2, 3], treat each pathway as a collection of biomolecules, as [4] point 
out in their review paper. The ORA approach used a list of differentially expressed (DE) 
genes as input to determine which sets of DE genes are over-represented or under-rep-
resented, being strongly reliant on the criteria used to choose the DE genes, such as the 
statistical tests and thresholds utilized.

A second generation of approaches was created to reduce this reliance on gene selec-
tion criteria by taking into account all gene expression values. The hypothesis behind 
these approaches is that small yet coordinated changes in groups of functionally related 
genes may be crucial in biological processes. These methods are named functional class 
scoring methodologies (FCS) [5]. Such methods include gene set enrichment analysis 
(GSEA) [2], gene set analysis (GSA) [6] and correlation adjusted mean rank gene set test 
(CAMERA) [7] among others.

ORA and FCS methods can be referred to as the first two generations of pathway 
enrichment analysis approaches. However, when pathways are seen as a basic unstruc-
tured and unordered collection of genes, all the genetic connections and interactions 
that are supposed to capture and characterize the actual processes at hand are simply 
neglected.

With the aim of including all of this additional information into the analysis, topol-
ogy-based (TB) approaches have been created. These methods account for interactions 
between biomolecules and provide better performance than standard second-genera-
tion methods [2, 3]. A variety of tools have been implemented, such as DEGraph [6], 
topologyGSA [8], NetGSA [9–11], Pathway-Express [12, 13], SPIA [14] among others. 
The common feature of approaches in this category is that they use prior knowledge of 
pathway topology information to obtain some gene-level statistic, which is then used to 
produce a pathway-level statistic, which is then used to rank the pathways.

The goal of pathway enrichment approaches is to compare the ’activity’ of interest 
pathways across two or more biological situations or groups of specimens (patients, cell 
lines, etc.). Another technical feature that distinguished pathway enrichment methods is 
the type of the statistical null hypothesis being tested. The majority of approaches may 
be divided into two categories: those that test (I) self-contained null hypotheses and (II) 
competitive null hypotheses [15]. A self-contained null hypothesis examines the activ-
ity of each pathway across biological situations (for example, normal vs. illness samples) 
without comparing it to the activity of other biomolecules/pathways. On the other hand, 
the activity of each pathway is compared to that of other biomolecules/pathways in a 
competitive null hypothesis. Even if the competitive null hypothesis has an interesting 
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interpretation, assessing the significance of the competitive null is challenging, since 
tests based on it take into account a framework for gene sampling that treats genes as 
independent.

The main contribution of this article is the development of a self-contained topology-
based algorithm developed into the framework of structural equation models (SEM), 
called SEMgsa() [16, 17]. Evaluation of system perturbation is incorporated in SEM 
[18], where the experimental condition is compared to a control one through the use of 
an exogeneous group variable acting on every node of the network. Statistical signifi-
cance of specific-pathway score is obtained combining node activation and node inhibi-
tion statistics extracted from SEM model fitting. In addition, unlike existing methods, an 
overall status of pathway perturbation of genes between case and control group has been 
computed considering both node perturbation and up- or down- regulation of genes for 
gaining more biological insights into the functional roles of predetermined gene subsets.

A second objective of this study is to provide a consistent optimum solution of any 
given biological situation. Many topology-based methods that investigate distinct null 
hypothesis have been proposed in literature. We compare five popular pathway analysis 
approaches to SEMgsa(), starting from the most similar ones in terms of multivariate 
test and self-contained hypothesis type (DEGraph, NetGSA and topologyGSA) together 
with one approach of competitive hypothesis type (PathwayExpress) and the older 
approach of over-representation analysis (ORA). All the methods in this article offer a 
nice use interface in R.

The aforementioned methods have been applied on observed and simulated expres-
sion data. The ultimate goal of expression data application is to provide a meaningful 
comparison of gene set analysis methods in terms of (i) sensitivity and (ii) prioritization 
for observed data and (i) type I error and (ii) power within each simulation run.

The remainder of the article is organized as follows. Firstly, we describe SEMgsa() 
features with regard to gene expression data both in terms of inference procedure and 
user interface. Then, we outline the experimental setup constructed to evaluate pathway 
enrichment methods, including real data application and simulation design. In the end, 
we provide the results together with overall discussion.

Method and implementation
SEM framework

A structural equation model (SEM) [18, 19] is a statistical framework for causal infer-
ence based on a system of structural equations defining a path diagram, represented as 
a graph G = (V ,E) , where V is the set of nodes (i.e., variables) and E is the set of edges 
(i.e., connections). The set E may include both directed edges k → j if k ∈ pa(j) and 
bidirected edges k ↔ j if k ∈ sib(j) . Although in the general setting of SEM latent vari-
ables and non-linear functions can be included [18], we focus on the special case where 
the parent set pa(j) , and the siblings set sib(j) , determine a system of linear equations, as 
follows:

(1)Yj =
k ∈ pa(j)

βjkYk + Uj j ∈ V
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where Yj and Uj are an observed variable and an unobserved error term, respectively; βjk 
is a regression (path) coefficient, and a covariance ψjk indicates that errors are depend-
ent, which is assumed when there exists an unobserved (i.e. latent) confounder between 
k and j.

Under such a model, the dependence structure among genes provided by pathways 
in biological database with directed and/or bi-directed edges (i.e., KEGG, Reactome, 
and many others) [20, 21], interacting with each other to generate a single biological 
effect, can be included explicitly though the graph, G = (V ,E) and evaluated using 
local and global statistics.
SEMgsa() procedure adds a binary group (treatment or disease class) node labeled 

X to V, and suppose that X = {0, 1} directly affects the set of genes in the pathway. As 
bonus, adding group node and group-genes edges, the pathway with several compo-
nents (clusters) and singleton genes induces a connected graph (see Fig. 1). Thus we 
consider a directed graph G = (V ∪ X ,E ∪ EX ) with the linear structural equations:

where V(x) and V(y) are the sets of exogenous (i.e., source and singleton genes) and 
endogenous (i.e., connectors and sinks) genes, respectively. The covariances, cov(Uj;Uk) 
are assumed to be equal to Eq. (2).

Comparing Eq. (1) with Eqs. (3)–(4), we note that the added node X may affect the 
mean gene expression values, but not their regression paths or covariances. In the R 
package SEMgraph these coefficients can vary by experimental or disease group via 
two-group SEM [16, 17], but in the following we assume additive group effects. Coef-
ficients βj (adjusted by the parents of the j-th node) determine the effect of the group 
on the j-th node, while the common path coefficients βjk represent regression coeffi-
cients, adjusted by parent set and group effect.

This type of SEM enables the identification of differentially expressed genes (DEGs) 
if genes show a statistically significant variation in their activity (e.g., gene expression) 
in the experimental group respect to the control one. In other terms, a test for the 
null value of the path, X → Y  is a test of:

From Eqs. (5)–(6) we note two different tests. Marginal tests of conventional DEGs 
analysis [22] for source and singleton genes, and conditional tests, given the parents, for 
connectors and sink genes. Conditioning increases power when there is a direct group 

(2)cov(Uj;Uk) =
{

ψjk if j = k or k ∈ sib(j)
0 otherwise

(3)Yj = βjX + Uj j ∈ V (x)

(4)Yj =
∑

k ∈ pa(j)

βjkYk + βjX + Uj j ∈ V (y)

(5)H0 : Yj ⊥ {X} vs. H1 : Yj �⊥ {X}, j ∈ V (x)

(6)H0 : Yj ⊥
{

pa(Yj),X
}

vs. H1 : Yj �⊥
{

pa(Yj),X
}

, j ∈ V (y)
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effect, and reduces gene variability. So, pathway topological structure makes the infer-
ence more precise [23].

Maximum likelihood estimates (MLEs) of the paths ( X → Y  ) can be easily obtained 
with one of the three algorithms of SEMgraph. Specifically, the core of model fitting 
in SEMgsa() function relies on the residual iterative conditional fitting (RICF), an 

Fig. 1  Visualisation of SEMgsa() procedure starting from Asthma KEGG pathway. The first graph summarise 
Asthma network properties, showing a pathway consisting of 31 nodes, 4 edges and 25 singletons. To 
maximise pathway information, SEMgsa procedure adds a binary group node (G = {0, 1}) that directly affects 
the set of genes in the pathway. In this way, the pathway with numerous singleton genes is edged with a 
group node and group-genes, resulting in a linked graph
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efficient iterative algorithm that can be implemented through least squares, with the 
advantage of clear convergence properties [24], and permutation-based p values for 
testing null hypothesis in Eqs. (5)–(6).

p values of group effect ( X → Y  ) are computed by randomization of group labels 
comparing the estimated parameters by RICF with their random resampling distri-
bution after a sufficiently high number of case/control labels permutations. Accurate 
small p value estimations are possible with no need for a large number of permu-
tations (SEMgsa() makes default = 1000 permutations), using the moment based 
approximation proposed by [25]. Once the empirical distribution of the permuted 
path coefficients is obtained, the two-sided p values are extracted from the nor-
mal distribution with mean and standard deviation estimated from the empirical 
distribution.

From node-wise p values, overall group perturbation on pathway genes can be 
computed based on the Brown’s method for combining non-independent, one-
sided significance tests [26]. The method computes the sum of one-sided p val-
ues: X2 = −2

∑

j log(pj) , where the direction is chosen according to the alternative 
hypothesis ( H1 ), and the overall p value is obtained from the chi-square distribution 
with new degrees of freedom f and a correction factor c to take into consideration the 
correlation among p values, resulting in X

2

c ∼ χ2(f ).
The conversion of two-sided p values in one-sided p values is performed according 

to the sign of the path ( X → Y  ) coefficient, βj:

If the overall p value < α (i.e., the significance level), we define node perturbation as acti-
vated when the direction of the alternative hypothesis is positive. Conversely, the status 
is inhibited if the direction is negative.

Node-wise p values < α (after correcting for multiple comparisons with one of sev-
eral adjustment methods, including Bonferroni or Benjamini–Hochberg procedure), 
are used for DEGs identification. While, a single p value of the two Brown’s p val-
ues ( p(+) : p-activation, and p(−) : p-inhibition) combined with a Bonferroni procedure 
[27], i.e. 2×min(p(+); p(−)) , indicates the global pathway perturbation.

In some cases, edge weights are defined in signalling pathways with discrete values 
[ −1, 0, 1 ], indicating gene-gene activity derived from biological database (e.g. KEGG). 
Usually they are: −1 for repressed or inactive, 0 for neutral, and + 1 for enhanced or 
activated. For gaining more biological insights into the functional roles of prior subset 
of genes, the sign of the minimum p value between node activation and inhibition has 
been retained to assess, in combination with pathway weights, an overall status of 
pathway perturbation of genes between case and control group. In detail, node per-
turbation obtained from RICF fitting has been combined with up- or down-regulation 
of genes to obtain overall pathway perturbation classification as displayed in Table 1.

(7)H1:with at least one βj > 0 =⇒ p
(+)
j =

{

pj/2 if βj > 0
1− pj/2 if βj < 0

(8)H1:with at least one βj < 0 =⇒ p
(−)
j =

{

pj/2 if βj < 0
1− pj/2 if βj > 0
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•	 The weighted adjacency matrix of each pathway was used to determine the up- or 
down-regulation of genes (taken from the KEGG database) as the column sum of 
weights across each source node. The pathway is marked as down-regulated if the 
total sum of the node weights is less than 1, and otherwise as up-regulated.

•	 The minimum among the p values determines whether the node perturbation is acti-
vated or inhibited; if positive, the node perturbation is described as activated, and 
otherwise as inhibited.

•	 It is possible to determine the direction (up or down) of gene perturbation by com-
bining these two quantities. In cases compared to the control group, an up- or down-
regulated gene status that is associated with node inhibition shows a decrease in acti-
vation (or an increase in inhibition). In contrast, up- or down-regulated gene status, 
associated with node activation, leads to an increase in activation (or decrease in 
inhibition) in cases relative to control group.

User interface

The example code of the function SEMgsa() is as follows.
SEMgsa(g = list(), data, group, method = "BH", alpha = 0.05, n_rep 

= 1000, ...)
The inputs are: a list of pathways to be examined (g); gene expression data where rows 

represent subjects, and columns graph nodes (data); a binary vector with 1 for cases 
and 0 for control subjects (group). Optional inputs are the multiple testing correction 
method (method), and the significance level (alpha) for DEGs selection, and the number 
of randomization replicates for RICF algorithm ( n_rep , default = 1000).

The first step in SEMgsa() workflow is to compute the weighted adjacency matrix 
of each pathway, obtain the sum of node weights and flag the pathway as up- or down-
regulated. This is crucial to obtain the overall pathway perturbation status at the end. 
Then RICF algorithm of R package SEMgraph, i.e. SEMrun(graph, data, group, 
fit = 1, algo = "ricf"), is applied on data, considering the group binary vector and 
the number of specified randomization replicates. More specifically, SEMrun() takes 
as input a single graph as an igraph object and has several additional inputs, including: a 
numeric value fit indicating the SEM fitting mode, where fit = 1 specifies a “common” 
model to evaluate group effects on graph nodes; the MLE method algo is used for model 
fitting, in this case fitting is done via RICF(algo = “ricf”).

The covariance matrix could not be semi-definite positive in the situation of large 
dimensionality (n.variables > n.subjects), making it impossible to estimate the param-
eters. When this occurs, regularization of the covariance matrix is enabled. SEMrun() 

Table 1  Overall pathway perturbation

Up/down regulation Node perturbation Overall perturbation

+ 1 P− (inh) Down act

− 1 P− (inh) Up inh

+ 1 P+ (act) Up act

− 1 P+ (act) Down inh
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uses internally two functions of the corpcor R package: the is.positive.defi-
nite() tests if the observed covariance matrix is positive, and if the response is equal 
to FALSE, the function pcor.shrink() implements the James-Stein-type shrinkage 
estimator [28] to regularized the covariance matrix.

Node-wise group effect p values are extracted from model fitting object together with 
the number of DEGs obtained adjusting p values with the chosen correction method 
while testing the specified level of alpha. Then, a data frame of combined SEM results 
is obtained putting together node-wise p values with Brown’s method and Bonferroni’s 
correction.

The output of SEMgsa() is represented by a list containing two objects with the fol-
lowing information for each pathway in the input list:

•	 gsa, a dataframe reporting size (No.nodes), DEGs number (No.DEGs), pathway per-
turbation status (pert), Brown’s combined p value of pathway node activation (pNA), 
Brown’s combined p value of pathway node inhibition (pNI) and the Bonferroni com-
bination of them (PVAL). ADJP refer to the pathway combined p value adjusted for 
multiple tests with Bonferroni correction, i.e., ADJP = min(K × PVAL; 1) , where K 
is the number of the input pathways.

•	 DEG, a list with DEGs names for each pathway, selected with p value < alpha after 
the multiple correction procedure with one of the method available in R function 
p.adjust(). By default, method is set to “BH” (i.e., Benjamini–Hochberg correc-
tion) and the significance level alpha to 0.05.

To read more about SEMgsa() function, in terms of description, usage, function argu-
ments and value, refer to https://​rdrr.​io/​cran/​SEMgr​aph/​man/​SEMgsa.

Experimental design
Benchmark data

Coronavirus disease (COVID-19) RNA-seq expression data from [29] (GEO accession: 
GSE172114) together with Frontotemporal Dementia (FTD) DNA methylation data 
(DNAme) from [30] (GEO accession: GSE53740) have been used as benchmark data. 
Network information has been retrieved from kegg.pathways object of the SEM-
graph package as a list of 225 edge weighted igraph objects corresponding to the KEGG 
pathways extracted using the ROntoTools R package [31]. Edge weights are defined with 
discrete values [−1, 0, 1] : −1 for inactive gene–gene activity, 0 for neutral, and +1 for 
activated.

Coronavirus disease (COVID‑19)

Coronavirus disease of 2019 (COVID-19) is a highly contagious respiratory infection 
that is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
Multiple probes for each Entrez gene ID were first eliminated. The empirical Bayes tech-
nique, as implemented in the limma R package [32], was used to fit linear models for 
differential expression analysis, and p values were adjusted for multiple testing using the 
method of Benjamini–Hochberg [33]. This procedure results in a matrix of 69 subjects × 
14,000 genes. Subjects include patients in the intensive care unit with Acute Respiratory 

https://rdrr.io/cran/SEMgraph/man/SEMgsa
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Distress Syndrome (“critical group”, N = 46) defined as cases, and those in a non-critical 
care ward under supplemental oxygen (“non-critical group”, N = 23) defined as controls. 
The expression matrix was finally matched with the corresponding Coronavirus dis-
ease—COVID-19 (hsa05171) KEGG pathway according to its name. The latter is a graph 
with 232 nodes and 208 edges, including five components and 109 sigleton (i.e. node 
degree = 0). The maximum subgraph consists of 54 nodes and 83 edges. This pathway 
was subsequently labeled as target pathway and its p value and rank were further investi-
gated for assessing the sensitivity and prioritization ability of the methods [34, 35].

Frontotemporal dementia (FTD)

Frontotemporal Dementia, a neurodegenerative disorder characterized by cognitive and 
behavioural impairments [36]. We will use DNAme data stored in the SEMdata pack-
age as ftdDNAme, a list of two objects: a data matrix of 256 rows (subjects) and 16,560 
columns (genes) containing the value of the first principal component of DNAme lev-
els, obtained applying a principal component analysis to methylated CpG sites within 
the promoter region, for each gene (genes with unmethylated CpGs in both conditions 
were discarded); and a binary group vector of 105 FTD patients (1) and 150 healthy 
controls (0). Unlike COVID-19 data, FTD has not a unique KEGG pathway associ-
ated to its name. According to KEGG BRITE database, the term Frontotemporal lobar 
degeneration (an alias for FTD; KEGG ID:H00078) is associated to 6 KEGG pathways: 
MAPK signaling pathway (hsa04010), Protein processing in endoplasmic reticulum 
(hsa04141), Endocytosis (hsa4144), Wnt signaling pathway (hsa04310), Notch signal-
ing pathway (hsa04330), and Neurotrophin signaling pathway (hsa04722). We can use 
the SEMgsa() function to apply gene set analysis (GSA) on a collection of networks, 
exploring the 6 selected FTD pathways as target ones. Thus, the ability of GSA methods 
will be investigated on 6 target pathways, combining results in terms of median p values 
and ranks for readability purposes. We refer the reader to the Additional file 1 for more 
detailed results.

Data simulations

Synthetic data, based on realistic expression data (“Coronavirus disease (COVID-19)” 
section), was used to carry out simulations following the practice in [10]. A subset of 
pathways q1 < K  out of total K pathways has been chosen to be dis-regulated. Next, 
a pre-specified number (s) of genes within each dis-regulated pathway was chosen to 
be altered (up or down) according to a topological measure (betweenness, commu-
nity, neighbourhood) and different mean signals ( ±0.5,±0.6,±0.7 ). Another subset of 
q0 < (K − q1) pathways with no dis-regulated genes has been chosen to evaluate sta-
tistical metrics. Finally, the COVID-19 benchmark data matrix is first normalized, with 
mean zero and unit variance for each gene within each group (cases and controls). Then, 
nine data generation procedures are executed, according to topological measures and 
adding mean signal to the pre-specified genes in the selected dis-regulated pathways. 
In summary, the simulation design ( 3× 3 ) with 100 randomization per design levels is 
reported in Table 2.
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Pathway deregulation

Each data generation procedure starts with the definition of a list of pathways to be 
tested. After recalling the list of kegg.pathways including N = 225 signaling path-
ways from the KEGG database, for efficiency purposes pathways with a minimum and a 
maximum number of nodes equal respectively to 30 and 300 have been filtered out for 
the analysis. Then, to speed up computations, the maximum component of each igraph 
[37] object corresponding to each selected pathway has been selected. Given this choice, 
igraph objects with maximum component smaller than the 60% of the total graph size 
have not been considered. This filtering procedure results into a list of K = 117 igraph 
objects.

We have to alter q1 = 10 pathway’s genes in order to deregulate it within a simula-
tion. Specifically, we consider the 9 KEGG pathways associated to Coronavirus dis-
ease—COVID-19 (hsa05171): Vascular smooth muscle contraction (hsa04270), Platelet 
activation (hsa04611), Toll-like receptor signaling pathway (hsa04620), NOD-like recep-
tor signaling pathway (hsa04621), RIG-I-like receptor signaling pathway (hsa04622), 
JAK-STAT signaling pathway (hsa04630), Natural killer cell mediated cytotoxicity 
(hsa04650), Fc gamma R-mediated phagocytosis (hsa04666) and Leukocyte transen-
dothelial migration (hsa04670).

We looked at three different methods for reflecting pathway topology in order to 
assign impacted genes to the deregulated pathways: betweenness, community and 
neighborhood, following the practice in [10, 38].

The number of all shortest paths in a directed graph that pass through a given node is 
known as its betweenness. The top 10 highest scoring betweenness nodes were used to 
choose affected genes in the betweenness deregulation design. According to the commu-
nity deregulation design, we located modules with dense connections between module 
nodes and spare connections between module nodes. Given the division of vertices in 
each community, the 10 affected genes are then randomly sampled from the community 
with the highest proportion of members. In the neighbourhood deregulation procedure, 
the vertices not farther than a given limit from another fixed vertex are called the neigh-
borhood of the vertex. After computing the neighbourhood of order 2, we sampled the 
10 vertices from the neighbourhood with the biggest size.

Within each of the associated pathways plus the target pathway of interest, an equal 
number of genes s has been selected as ‘dysregulated’. We decided to fix the number of 
affected genes to s = 10 for each pathway, with the aim of obtaining equal contribution 
from each associated disease (due to the presence of smaller pathway sizes). However, 
given that overlapping genes between pathways may occur, the unique genes out of the 
total S ≤ s × q1 = 10× 10 have been retained as DEGs for pathway dysregulation. Thus, 

Table 2  Summary of simulation design ( 3× 3 ) with 100 randomization per design levels

Topology design Gene regulation Mean signal

± 0.5 ± 0.6 ± 0.7

Betweenness Up/down 100 100 100

Community Up/down 100 100 100

Neighbourhood Up/down 100 100 100
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the number of total dysregulated genes S is not fixed, but changes according to the cho-
sen topology design. As a note, given the random sampling within the community dereg-
ulation design, the sampled genes change according to the specified seed. In the end, a 
weight representing the up- or down-regulation of genes was kept along with the Entrez 
gene ID of the affected genes. The weighted adjacency matrix of each pathway comprises 
a column regarding the sum of weights over each source node, which can be used to 
determine up- or down-regulation (taken from the KEGG database). The pathway is 
marked as down-regulated or up-regulated depending on whether the total sum of node 
weights is less than 1. Each gene’s weight has been extracted in order to obtain an up 
or down mean signal, which better reflects variations in the expression of the impacted 
genes between the control and treatment groups.

After identifying the subset of DEGs according to the chosen topology design, path-
ways with a number of dysregulated genes ≤ 1 have been selected as true negatives 
( q0 ) to evaluate type I error from simulations. Unlike the q1 number that is fixed to 10 
COVID-19 related pathways, the number of q0 pathways changes according to the cho-
sen subset of DEGs.

To summarise, for all topology design, the total altered genes S inside the q1 = 10 
pathways are differentially expressed with a mean difference varying from ( ±0.5 , ±0.6 , 
±0.7 ). Note that the magnitude of the mean signal is expressed relative to the unit vari-
ance of each gene (see [10]).

The simulated expression matrices were directly supplied to SEMgsa() and DEGraph, 
topologyGSA, NetGSA, PathwayExpress and ORA algorithms together with the list of 
igraph objects corresponding to the chosen KEGG pathways.

Pathway enrichment methods

Table  3 provides an overview of the tested pathway enrichment methods in terms 
of null hypothesis, input requirements, pathway information and availability on R 
together with main papers for reference. These methods differ in two main aspects: (i) 
the type of null hypothesis, self-contained or competitive; (ii) input data, expression 
data or thresholded gene p values. ORA and PathwayExpress test the competitive null 
hypothesis of whether the genes in the set of interest are at most as often DE as the 
genes not in the set, instead SEMgsa(), DEGraph, topologyGSA and NetGSA test 
the self-contained null hypothesis of no genes in the set of interest are DE. Another 
major difference among these methods regards the input requirements. There is a 

Table 3  Overview of tested pathway enrichment methods

Method Null hypothesis Gene p 
value 
tresholding

Expression 
data

Pathway R/Bioconductor [References]

SEMgsa Self-contained No Yes Topology SEMgraph 1.1.1 [17]

DEGraph Self-contained No Yes Topology DEGraph 1.46.0 [14]

TopologyGSA Self-contained No Yes Topology TopologyGSA 1.4.7 [13]

NetGSA Self-contained No Yes Topology netgsa 4.0.3 [10–12]

PathwayExpress Competitive Optional No Topology ROntoTools 2.23.0 [6, 8]

ORA Competitive Yes No Membership EnrichmentBrowser 2.25.3 [1]
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high sensitivity to the p value cutoff because all techniques based on testing the com-
petitive null hypothesis must identify DE genes based on a pre-specified threshold of 
corrected p values. Without making any arbitrary decisions on the list of DE genes, all 
self-contained tests directly employ expression data.

For computational purposes, two main aspects have been addressed within the 
main analysis, mostly regarding DEGraph, topologyGSA and NetGSA:

•	 Common covariance matrix: DEGraph, TopologyGSA and NetGSA are multivari-
ate hypothesis testing-based approaches. The vectors of gene expression levels in 
each (sub)pathway are assumed to be random vectors with multivariate normal 
distributions, Np(µ1,�1) and Np(µ0,�0) where the covariance matrix stores the 
network topology information. If the two distributions of the gene expression vec-
tors corresponding to the two phenotypes differ significantly from one another, 
the network is thought to be strongly altered when comparing the two pheno-
types. A multivariate hypothesis test is used to determine significance. The key 
distinctions between these three analytic approaches are the specification of the 
null hypothesis for statistical tests and the procedures for calculating the param-
eters of distributions.

	 DEGraph was developed to perform a two-sample test of means while taking 
the topology of the genes into account. It considers a special case where both 
covariance matrices are expected to be equal, �1 = �0 and tests the null µ1 = 
µ0 . DEGraph uses a modified multivariate Hotelling T 2-test hypothesis to iden-
tify significant (sub)pathways. Two groups are compared in terms of the first k 
components of the graph-Fourier basis (or in the original space after filtering out 
k high-frequency components). In our analysis, the largest component is used as a 
representation of the whole pathway.

	 TopologyGSA begins by transforming the pathway network graph into a direted 
acyclic graph (DAG) and then to its “moral” graph by connecting all parent nodes 
of a vertex and removing the edge directionality. The moral graph is then decom-
posed into cliques (i.e. subsets of nodes in the graph for which each pair is con-
nected by an edge). A set of two hypothesis tests is applied to compute the statis-
tical significance of the impact on a given graph. The first test determines if the 
inverses of the covariance matrices are equal. The second hypothesis test exam-
ines the equality of the distributions’ means. To reduce the computational bur-
den of this method, we consider a special case like DEGraph by assuming that the 
covariance matrices are expected to be equal and we employed the hypothesis test 
only for the mean of the distributions. When the covariance matrices are equal, 
the test of differential expression for the means is performed through a multivari-
ate analysis of variance (MANOVA), equivalent to Hotelling’s T 2-test.

	 With NetGSA, the K networks may differ, and K take into account a linear mixed 
effects model for each condition. The underlying biological network is encoded 
in the 0–1 adjacency matrix, Ak which determines the influence matrix �k 
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under each condition. The latter matrix describes the impact of each gene on 
all the other genes in the network and is calculated from the adjacency matrix, 
�k = (I − Ak)

−1 . Here we defined k = 2 and, to speed up computations, we 
assumed that the network is shared between the two conditions, allowing the 
computation of only one common adjacency matrix for case and controls.

•	 Hotelling’s T 2-test: this test represent a a natural generalisation of the t-test for test-
ing the difference between multivariate means of two populations. T 2 is equivalent 
to Mahalanobis distance: D2 = (ȳ1 − ȳ0)

T �̂−1(ȳ1 − ȳ0) , where �̂ is an estimation of 
the common covariance matrix. It is known to be consistently most effective against 
global mean-shift alternatives for multivariate normal distributions, but it may 
exhibit poor behavior in high dimensions. The T 2 test has very poor performance 
when the number of genes, p is close to number of samples, n; and is ill-defined 
when p equals or exceeds n. This is because the test statistic relies on the inverse of 
the estimated covariance matrix, which does not exist when p ≥ n and has large vari-
ation when p is close to n . We proposed to regularize the sample covariance matrix 
in order to to stabilize its inverse and we used the decorrelated mean difference, as 
test statistic: D = (ȳ1 − ȳ0)

T �̂− 1
2 u/

√
p , where u = (1, 1, . . . , 1) . D are very close to 

D2 [5], but the former is computationally more efficient, especially if randomization 
procedure of the null distribution is used. In this way, we solved issues regarding the 
computation of T 2 test for both topologyGSA and DEGraph. In addition, permuta-
tion-based p values for testing null hypothesis are computed by randomization of 
group labels, as performed in SEMgsa() function, allowing more accurate p value 
estimation with no need of a large number of permutations.

Evaluation measures

In the benchmark data analysis, all methods were evaluated according to (i) sensitivity 
and (ii) prioritization. The sensitivity refers to the ability of producing small p values for 
the target pathway and prioritization refers to the ability of ranking close to the top the 
gene sets that are indeed relevant to a given condition.

Performance of GSA methods within each simulation run has been evaluated look-
ing at (i) type I error and (ii) power. When a true null hypothesis is rejected, a type I 
error, also known as a false positive, occurs, whereas the power assesses the probability 
of a test successfully rejecting the null when the alternative hypothesis is true. Power 
comparisons are only useful if the tests have appropriate type I error control. Pathways 
associated with COVID-19 disease ( q1 ) were used to evaluate power, whereas those with 
a number of dysregulated genes ≤ 1 ( q0 ) were utilized to evaluate type-I error [11].

The type I errors and powers were estimated as the fraction of null hypotheses rejected 
across 100 simulated replications.

Results
Benchmark results

Significance of target pathway was detected if the adjusted p value (after Bonferroni cor-
rection for multiple tests) didn’t exceed the level of 0.05. COVID-19 pathway was identi-
fied only by SEMgsa() together with topologyGSA and NetGSA. The lowest p value 
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was reported by SEMgsa() together with topologyGSA (see Table 4). DEGraph, ORA 
and PathwayExpress seems not to be sensitive to mean changes between conditions in 
Coronavirus data. Looking at the results for Frontotemporal Dementia, the only signifi-
cant p value (in terms of median p values of related pathways) is reported by SEMgsa(), 
confirming the high sensitivity of our method. Results disaggregated for the six pathways 
related to FTD are shown in Additional file 1.

Table  4 presents also the relative ranking of target pathway reported by the differ-
ent methods. Gene sets having the same p value receive the same rank. The gene sets 
with the lowest p value are ranked first, and so forth. Relative rankings are computed by 
dividing the absolute rank by the number of unique p value categories and multiplied by 
100 (i.e., percentile rank). Among all methods, SEMgsa() perform the best with a 10th 
position for the COVID-19 pathway and a median ranking of 39 for FTD. Same ranking 
for FTD is reported by DEGraph but with a p value larger than threshold (0.05). Similar 
performance is reported by topologyGSA for Coronavirus data, with a ranking of 13 but 
with poor ranking for FTD (58). Despite the good sensitivity, NETgsa shows poor prior-
itization results.

ORA method has poorer performance in terms of both sensitivity and prioritization 
because this type of approach only works when the magnitude of mean changes between 
conditions is large.

Simulation results

We summarize the relative performance of all methods based on false positive rate and 
power results on the subset of pathways associated to the target disease (see “Data simu-
lations” section). We focused on those metrics under the betweenness, community and 
neighborhood dysregulation design. Metrics were evaluated on 100 simulation replica-
tions and were summarized grouping results by mean signal and dysregulation design 

Table 4  Benchmark results on Coronavirus disease (COVID-19) and frontotemporal dementia (FTD)

*Since the term Frontotemporal lobar degeneration (an alias for FTD; KEGG ID: H00078) is associated to 6 KEGG pathways, 
sensitivity and prioritisation metrics have been aggregated by taking the median. Results for SEMgsa() have been 
highlighted in bold

Metrics Method Disease

Coronavirus disease (COVID-
19)

Frontotemporal 
dementia (FTD)*

Sensitivity SEMgsa() < 0.001 < 0.001

DEGraph 0.771 0.653

NetGSA 0.011 0.563

ORA 0.709 0.375

PathwayExpress 0.444 0.981

TopologyGSA < 0.001 0.740

Prioritization SEMgsa() 10 39
DEGraph 90 39

NetGSA 63 44

ORA 83 56

PathwayExpress 32 100

TopologyGSA 13 58
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with the aim of grasping differences in the behavior of GSA methods under different 
experimental conditions. Error plots (see Figs. 2, 3) show the mean of those aforemen-
tioned metrics grouped by either mean signal or topology design together with their 
standard deviations across simulations. SEMgsa() is highlighted as red, compared to 
the others colored blue. Comparison figures under different mean signal are reported 
within the main discussion. More comparisons under different topology designs are 
available in Additional file 1.

Figure 2 shows that, at the 0.05 significance level, all methods control the type I error 
rate across the q0 pathways, selected among the K − q1 pathways with ≤ 1 dysregulated 
genes under different level of mean signal. This procedure results for betweenness topol-
ogy design in q0 = 16 , for community in 10 ≤ q0 ≤ 30 (note that we have a range of 
numbers given the random sampling of genes from the community with the highest pro-
portion of members) and neighbourhood in q0 = 14 . Type I error is defined as the aver-
age proportion of simulations where the method falsely rejects the null hypothesis of 
no enrichment. It’s worth noticing that PathwayExpress’ type I error rates show a wider 
distribution, followed by SEMgsa() which enlarges its error bands in correspondence 
of the highest mean signal. However, the error rates of the latter methods are near 0 and 
below the nominal threshold of 0.05. All other techniques appear to have conservative 

Fig. 2  Average type I error on the 10 KEGG pathways grouped by method and mean signal on simulated 
data. Average type I error together with standard deviation across simulations is displayed for each method. 
Lower type I error indicates better performance. At the 0.05 significance level, all methods control the type I 
error rate across the 10 pathways under different level of mean signal

Fig. 3  Average statistical power on the 10 KEGG pathways grouped by method and mean signal on 
simulated data. Average power together with standard deviation across simulations is displayed for each 
method. Higher power indicates better performance. SEMgsa stands out among all with 90–100% power 
across simulation. NetGSA and topologyGSA get close to SEMgsa with about 75% statistical power only with 
differential mean level of 0.7
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type I error rates. Type I error results have been further investigated for SEMgsa(), 
showing the ability of the proposed method to capture the signal also at lower values 
(smaller than 0.5). As a result, given the high sensitivity of SEMgsa(), the higher the 
value of the mean signal, the higher the rate of false positives. Same results seems not 
to be shared by the other methods, showing the need of higher differential expression 
(higher than 0.5) to achieve acceptable performance.

Statistical power of different methods has been investigated in terms of average pro-
portion of simulations where the method correctly rejects the null hypothesis of no 
enrichment. The higher the power, the better. Figure 3 shows that SEMgsa() stands out 
among all with 90–100% power across simulations. PathwayExpress reaches a position 
around 50% statistical power for all the level of mean signal. The same could be stated 
summarizing the results by dysregulation design, with about 75% statistical power only 
under the betweenness design (see Additional file 1). As stated previously, the higher the 
mean signal, the higher the ability of the methods to correctly reject the null. NetGSA 
and topologyGSA get close to SEMgsa() with about 75% statistical power only with 
differential mean level of 0.7 (Fig. 3). Slightly better results are reported from both meth-
ods with respect to the betweenness design (see Additional file 1). DEGraph instead, is 
placed at the bottom of the graph for most of the comparisons (statistical power near 0).

Among the methods compared, SEMgsa() has the best overall performance.

Discussion
Topology-based approaches exhibit greater statistical power in finding pathway enrich-
ment, according to earlier studies [39, 40]. However, several limitations may affect user 
experience in terms of computational efficiency.
SEMgsa() represent a topological based and self-contained hypotesis method, in line 

with NetGSA, DEGraph and topologyGSA. Three main points make SEMgsa() more 
valuable for users than existing GSA methods:

•	 Exploiting pathway information: Existing methods have specific input requirements 
about pathway topology. TopologyGSA, for instance, only works for pathways whose 
topology is a DAG and whose size is less than the required number of samples in the 
two conditions/groups. If a pathway has multiple connected components, DEGraph 
will check to see if the means vary for each connected subgraph. Without taking 
into account singletons, NetGSA fits a linear mixed model for each condition. Over-
coming this limitations, SEMgsa() accepts as input directed and/or undirected 
networks that define pathway interconnectedness. Inside SEMgsa() workflow, the 
function SEMrun() maps the expression data onto the input graph corresponding 
to each pathway and converts it into a SEM. Node-level perturbation is evaluated 
according to the specified binary group variable (i.e. case/control) by fitting a “com-
mon” model to evaluate group effects on graph nodes. In this way, adding group-
nodes and group-genes edges (see Fig. 1), the pathway with several components and 
singleton genes becomes a connected graph, allowing to exploit all available pathway 
information.

•	 Higher sensitivity to pathway perturbation: Existing methods, like ORA, save as out-
put of GSA a list of DEGs for each pathway, recovered from the input named vec-
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tor containing log2 fold-changes of the differentially expressed genes. The latter is 
obtained from the differential expression analysis done on the gene expression data, 
where the genes with an adjusted (for multiple comparisons) p value smaller than 
a pre-specified cutoff are considered as DEGs. The adjustment process is highly 
dependent on the number of tests performed, for example Bonferroni adjusted 
p values are calculated by multiplying the original p values by the number of tests 
performed. SEMgsa() fits a SEM model for each tested pathway. For source and 
singleton genes, marginal tests of traditional DEGs analysis are applied while for con-
nections and sink genes conditional testing, given the parents are used. When there 
is a direct group effect, conditioning increases power and reduces gene variability. As 
a result, the topological structure of the pathway improves the precision of the infer-
ence. Furthermore, the significance of node-level perturbation is computed within 
each pathway and the adjustment procedure for p values is less stringent given the 
smaller number of tests. This choice allows to obtain higher sensitivity to pathway 
perturbation. Thus, from the output of SEMgsa() we can extract a seed list of 
DEGS for each pathway that can be useful to discover novel disease-associated inter-
actions. A further step could be to extract a Steiner tree, mapping the DEGs on the 
union of the KEGG pathways and finding a connected subgraph such that the addi-
tional nodes (Steiner or connector nodes) connecting seed nodes (terminal nodes) 
minimize the sum of the weight of every edge in the subgraph (i.e., maximizing edge 
perturbation between disease nodes). Then, fitting the filtered active (perturbated 
disease) module with SEMrun(), we can obtain a perturbed backbone regarding the 
disease of interest, where important connectors or clusters of genes can be identified 
[16, 17].

•	 Index for overall pathway perturbation: Among the existing methods, only SPIA 
reports the direction in which the pathway is perturbed (activated or inhibited), 
exploiting a posteriori pathway information obtained from hypothesis testing. 
Like SPIA, SEMgsa() outputs a column summarising overall pathway perturba-
tion, but combining also a priori information obtained from biological databases 
(up- or down-regulation of genes derived from KEGG) to a posteriori information 
obtained from the analysis of gene expression data (node perturbation obtained from 
SEMgsa()). The combination between these flow of information allows to bet-
ter define the direction of gene perturbation. Table  5 provides the results for per-

Table 5  Overall pathway perturbation of KEGG pathways related to Coronavirus disease (COVID-19) 
and frontotemporal dementia (FTD)

Disease KEGG pathway Pert

Coronavirus disease—COVID-19 Coronavirus disease—COVID-19 Up act

Frontotemporal dementia (FTD) Protein processing in endoplasmic reticulum Up act

Endocytosis NA

Neurotrophin signaling pathway Up act

Wnt signaling pathway NA

MAPK signaling pathway Up act

Notch signaling pathway Down act
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turbation index with respect to benchmark data. COVID-19 pathway is associated 
to an increase in activation in cases with respect to control group (“up act”); same 
result can be stated for two out of six pathways (Neurotrophin signaling pathway 
and MAPK signaling pathway) regarding Frontotemporal dementia. Notch signaling 
pathway is associated to a decrease in aactivation in cases with respect to control 
group (“down act”). Note that the NA are reported for the networks without + 1 or 
−1 edge weights in the adjacency matrix, resulting into no calculation for the combi-
natorial measure.

Conclusions
We have shown that SEMgsa() is easily accessible to common users and provides 
robust results under several experimental conditions. It obtains external pathway infor-
mation solving the problem common to many topology-based methods but offering bet-
ter statistical power and prioritization results, while also controlling for type I error.

We believe that SEMgsa() can be a valuable tool for practitioners, also when under-
taking complex pathway enrichment analysis.
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