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Background
Liver cancer, as reported by the World Health Organization [1], accounts for approxi-
mately 905,677 new cases and 830,180 deaths globally each year, ranking sixth in 
global cancer incidence and third in global cancer death rates. Its mechanism is com-
plex and may involve multiple factors, such as viral infections [2], genetic factors [3], 
environmental factors, lifestyle habits, and diet [4]. There are two types of liver can-
cer: primary liver cancer and metastatic liver cancer. Primary liver cancer refers to 
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a malignant tumor originating from liver cells and includes common types such as 
hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and mixed 
hepatocholangiocarcinoma (MHCC) [5–8]. Among primary liver cancers, HCC is the 
most prevalent, accounting for 75% to 85% of cases. Chronic infection with the hepa-
titis B virus (HBV) [9] and hepatitis C virus (HCV) [10] are the main risk factor for 
the development of HCC.

HBV integrates viral DNA into the host cell genome, which is an important mecha-
nism of HBV infection, and it can affect chromosomal stability, gene expression, DNA 
mutations, signal transduction pathways, and epigenetics [11, 12]. Consequently, this 
complex interplay can contribute to the initiation and progression of liver cancer. Inves-
tigating HBV integration offers a profound understanding of the intricate interaction 
between HBV and the host genome. Additionally, it enables the exploration of the het-
erogeneity observed in liver cell cancer, thus establishing a foundation for individualized 
treatment strategies. Furthermore, HBV integration is not only an important mecha-
nism for the occurrence of HCC but also a biomarker for diagnosis, treatment [13], and 
prognosis evaluation of HCC [14].

The determination of integration sites plays a vital role in comprehending the mecha-
nism of HBV integration in the human chromosome and the pathogenesis of liver cancer. 
Compared to other types of mutations, such as deletions or single nucleotide polymor-
phisms, the detection tools available for viral integration mutations are deficient. Cur-
rently, only a few tools, such as SurVirus [15] and Seeksv [16], exist for the detection 
of these mutations. However, these tools may experience unstable performance or fail 
to balance accuracy and sensitivity when faced with various coverage and integration 
sequence lengths. Traditional insertion mutation detection tools like Lumpy [17] and 
Pindel [18] may not differentiate integrated and non-integrated mutations, leading to 
a high number of false positives. Therefore, a comprehensive integration site detection 
tool with excellent performance is essential to handle the intricacies of sequencing data.

With the development of deep learning in the field of bioinformatics, an increasing 
number of deep learning methods have been applied in the analysis of sequencing data. 
For example, DeepVariant, developed by the Google Brain team, converts genomic 
sequences into image formats and then uses CNN to train and predict these images for 
mutation detection [19]. By utilizing known mutation annotation data for training, the 
deep learning model can grasp the features and patterns of mutations from sequenc-
ing data. Consequently, it can be utilized to predict mutations in previously uncharted 
sequencing data. In this study, we propose a deep learning-based method for detecting 
integration sites. Specifically, the approach employs natural language processing (NLP) 
[20] to detect integration sites by treating genome sequence alignment data as a spe-
cial language. To ensure the NLP model captures the general rules and semantic infor-
mation of sequence alignment data, we encode the sequence alignment data and design 
a feature-based HBV integration site detection channel named ViroISDC. ViroISDC 
exhibits excellent comprehensive performance, it achieves high precision while main-
taining a relatively high sensitivity for uncovering as many HBV integrations as possible, 
thereby enabling subsequent HBV integration analysis. Moreover, ViroISDC ensures sta-
ble detection performance in the face of diverse HBV integration patterns, genomic vari-
ations, and the complexities associated with sequencing data.
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Results
Model training

ViroISDC was trained for 27 epochs, and the model was evaluated after each epoch, as 
shown in Fig.  1A, B. The model converged well by the 5th epoch, and its generaliza-
tion performance was excellent, with the training and validation curves closely aligned. 
Moreover, considering the initial accuracy of over 85%, it can be inferred that the pre-
training model successfully learned semantic information from the corpus and signifi-
cantly contributed to the integration site detection task.

The method of extracting significant features is effective in improving the performance 
of the classification model for long alignment sequences. It is evident that the improved 
approach effectively accelerated the model convergence, resulting in lower loss and 
higher accuracy (Fig.  1C, D). Additionally, the improved model successfully mitigated 
the problem of gradient vanishing and exploding caused by lengthy sequences in the 
15th epoch for the unimproved model, allowing the ViroISDC model to converge more 
smoothly. Figure 1E demonstrates the comparison of precision, recall, and F1-score on 
the test set for both models. The improved model outperforms the unimproved model 
on all three metrics. Furthermore, after analyzing the corpus data, it was found that the 
unimproved model struggled particularly with long sequence data, as evidenced by the 
majority of undetected data being longer sequences.

Real dataset analysis

As shown in Fig. 2, for the real dataset SRA335342, Lumpy, Pindel, and Seeksv detected 
only a relatively small number of integration sites, resulting in poor performance in 
terms of Precision, Recall, and F1-score. Among the five compared tools, SurVirus 

Fig. 1  Model training and the improved model. A The loss curve of ViroISDC on the training set and 
validation set. B The accuracy curve of ViroISDC on the training set and validation set. C The loss curve of 
the method of extracting salient features and the ordinary methods. D The accuracy curve of the method of 
extracting salient features and the ordinary methods. E The comparison of the Precision, Recall and F1-score 
of the two models on the test set
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ranked second in performance, with a Precision of 50.54%, Recall of 17.94%, and an 
F1-score of 26.48% by combining Precision and Recall. Based on these three indicators 
and SurVirus’ detection results, it can be concluded that SurVirus achieved relatively 
high accuracy in detecting integration sites. However, its sensitivity was relatively low, 
indicating that it is more conservative and could only detect a small number of integra-
tion sites. In contrast, ViroISDC performed better than other tools in all three indica-
tors in this real dataset, with a Precision of 86.21%, Recall of 85.88%, and an F1-score of 
86.04%. The detection results demonstrated that ViroISDC accurately and reliably iden-
tified integration sites while also exhibiting higher sensitivity in detecting more integra-
tion sites. This characteristic is particularly valuable in uncovering important features 
related to hepatitis B virus integration during downstream analysis of integration sites.

Comparison with different detection methods in simulated dataset

To better illustrate the good performance of our proposed method, we introduce cur-
rently widely used detection methods, including Lumpy, Pindel, Seeksv, and SurVirus. 
Lumpy is a probability-based framework that uses breakpoint evidence to determine 
the location and type of structural variation by combining different structural variation 
signals. The Pindel algorithm uses a pattern growing method to find breakpoints in the 
genome sequence and is used to detect large deletions and medium-sized insertions. 
The Seeksv algorithm is based on four different detection signals: soft-clipped reads sig-
nal, discordant paired-end mappings signal, document (DOC) signal and fragments that 
cannot be matched at both ends. signals, Seeksv comprehensively utilizes these signals 
to detect structural variations and viral integration breakpoints. SurVirus uses a repeat-
aware alignment algorithm that more accurately aligns reads to host and viral genomes. 
This algorithm can correct erroneous alignments in repeated regions, thereby improving 
the accuracy of integration detection.

Given the uncertainty of integration events in the real dataset due to the nature of 
sample sequencing and potential errors during the process, as well as the lack of a gold 
standard, simulation datasets were employed in this study to evaluate and analyze the 
experiment. The integration site detection performance of five tools, namely Lumpy, 
Pindel, Seeksv, SurVirus, and ViroISDC, was assessed with simulated datasets (Fig. 3).

Fig. 2  Performance of different tools on real datasets
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In terms of Lumpy’s integration length between 100 bp-500 bp, the precision of the 
four coverage levels is relatively high. Among them, 10X and 100X have a precision of 
1, while 500X and 1000X have a precision of 97.26% and 96.3%, respectively. However, 
Lumpy is almost ineffective in other integration lengths, with only 50% accuracy in inte-
gration between 500 bp-1000 bp at a coverage level of 1000X. Pindel shows the ability to 
detect most coverage levels and integration lengths but with a relatively poor detection 
performance. Conversely, Seeksv, SurVirus, and ViroISDC show better detection perfor-
mance overall. Seeksv performs well in low coverage levels and short integration situa-
tions. SurVirus has a relatively high overall precision rate, although its sensitivity is often 
lower. Moreover, SurVirus is ineffective in detecting integration between 500 bp-1000 bp 
at a coverage level of 100X, 100-500 bp at a coverage level of 500X and 1000X, and 1000-
2000 bp at a coverage level of 1000X. ViroISDC demonstrates good performance in dif-
ferent integration lengths under full coverage levels. It maintains high levels of accuracy 
and sensitivity, making it advantageous for most coverage levels and integration lengths.

Additionally, we investigated the changes in detection performance of integration sites 
across different tools under varying coverage. ViroISDC consistently outperforms other 

Fig. 3  Performance of different tools for simulated different sequencing depths and insertion sequence 
lengths. A–D, the performance of different tools for different lengths of insertion sequences at sequencing 
depths of 10X,100X, 500X and 1000X, respectively. E–G performance of different tools in detecting 
integration sites under different sequencing depth
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tools in accuracy, followed by SurVirus. Moreover, ViroISDC exhibits a relatively small 
fluctuation amplitude while retaining high accuracy, indicating that ViroISDC is less 
influenced by coverage (Fig. 3E). The recall rate curve indicates that all tools, except Sur-
Virus, showed an increase in recall rate as coverage increases. Out of all the tools, Seeksv 
performs the best, closely followed by ViroISDC (Fig. 3F). And from the perspective of 
F1-score indicator, ViroISDC outperforms other tools in most cases (Fig. 3G).

Sequence verification near the integration site

To further verify the effect of ViroISDC in detecting HBV integration, we randomly 
selected 200 integration sites for manual verification. The verification process is shown 
in Fig. 4A, which is a description of the sequence verification near a certain integration 
site. After obtaining the integration site, extract 10 bp before and after the integration 
site, and extract reads containing the above related sequences from the sequencing data. 
In NCBI, these reads are compared with the Nt database [21] for BLATSTn [22]. This 
tool will display the alignment results in the form of a picture, and it can also detect the 
alignment information of each sequence, including identity, similarity, sequence length, 
etc. Based on this information, we verified the sequences near the integration site. The 
results of this figure show that these two sequences are compared with the hepatitis B 
genome and the human genome. And the location of the breakpoint is the same as what 
we found, indicating that the location of the breakpoint and the sequence before and 
after are accurate. We also collected the verification results of these 200 integration sites, 
with positives (TP) accounting for 95.5% and false positives (FP) accounting for 4.5% 
(Fig. 4B). The results show that ViroISDC has good detection performance and reaches 
the expected accuracy level.

Correlation between HBV integration and chromosome

Integration site detection was performed on 289 HCC patients, resulting in the identi-
fication of 6238 integrated sites in cancer tissues and 1250 integrated sites in paracan-
cer tissues. In liver cancer tissues, integrated sites were distributed in 24 chromosomes. 

Fig. 4  Verification of integration sites. A Verification workflow of the the sequence near integration site. 
B Accuracy of predicted integration sites. TP represents true positive (integrated sites are true), and FP 
represents false positive (integrated sites are false)
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The count of integrated sites on each chromosome was normalized. Compared to the 
uniformly distributed normalized data, HBV integration on chromosomes showed 
a certain selection bias (Fig.  5A). In cancer tissues, the preferentially integrated chro-
mosomes were marked with red pentagrams, including chromosome 5 (7.53% VS 
5.84%, χ2

= 32.781 > 3.84 , P = 1.03× 10−8
< 0.05 ), chromosome 8 (6.99% VS 4.73%, 

χ
2
= 71.977 > 3.84 , P = 2.18× 10−17

< 0.05 ), chromosome 17 (4.18% VS 2.62%, 
χ
2
= 60.501 > 3.84 , P = 7.35× 10−15

< 0.05 ), chromosome 19 (3.56% VS 1.91%, 
χ
2
= 90.885 > 3.84 , P = 1.52× 10−21

< 0.05 ), and chromosome 20 (2.82% VS 2.04%, 
χ
2
= 19.298 > 3.84 , P = 1.12× 10−5

< 0.05 ). The comparison between actual experi-
mental HBV integration in paracancer tissues and theoretical HBV integration unveiled 
a certain chromosomal selection bias in HBV integration. The preferentially integrated 
chromosomes were marked with orange pentagrams in Fig.  5A, including chromo-
some 17 (3.68% VS 2.62%, χ2

= 6.286 > 3.84 , P = 0.0121 < 0.05 ), chromosome 19 
(4% VS 1.91%, χ2

= 32.29 > 3.84 , P = 1.33× 10−8
< 0.05 ), chromosome 20 (2.8% VS 

2.04%, χ2
= 4.082 > 3.84 , P = 0.0434 < 0.05 ), and chromosome 22 (2.4% VS 1.66%, 

χ
2
= 5.081 > 3.84 , P = 0.0242 < 0.05).

Combining analysis of cancer tissue and paracancer tissue, it was evident that chromo-
somes 7, 19, and 20 were all susceptible to invasion by the hepatitis B virus. In order to 
investigate whether there is an infection advantage of hepatitis B in the two types of tis-
sue, the distribution of HBV integration sites in the two types of samples was statistically 

Fig. 5  Distribution of HBV integration sites. A Distribution of HBV integration sites on human chromosomes. 
B Distribution of integration sites on cancer tissue and paracancerous tissue. C Distribution of HBV integration 
sites in different gender. D Distribution of HBV integration on sex chromosomes
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analyzed in the experiment, as shown in Fig. 5B. Notably, HBV integration in cancer-
ous tissue and paracancerous tissue exhibited significant differences (χ2 = 32.29 > 3.84, 
P < 0.0001), with a greater propensity for the hepatitis B virus to integrate into cancer-
ous tissue. This observation may be attributed to specific genes or genomic regions on 
the chromosomes, such as the inactivation of tumor suppressor genes which leads to 
the proliferation of cancer cells, and the integration sequence embedded in cancer cells 
will rapidly proliferate together with cancer cells, resulting in more integrations being 
detected. Therefore, the analysis of HBV integration of samples can locate the foci of 
liver cancer and determine the degree of liver cancer development, which is important 
for the prevention, diagnosis and treatment of liver cancer.

Correlation between HBV integration and gender

In 289 HCC patients, there were a total of 43 females and 246 males. Among the 
female samples, 485 integrated loci were detected, while 7003 were detected in the 
male samples. Compared to the expected distribution (no gender bias in HBV inte-
gration), HBV integration exhibited significant gender bias ( χ2

= 417.225 > 3.84 , 
P = 9.81× 10−93

< 0.05 ), indicating that the hepatitis B virus is more likely to invade 
the male body (Fig. 5C). It is consistent with previous observations and proves the fea-
sibility and accuracy of our method. To further study the correlation between integra-
tion and gender, the experiment analyzed the distribution of integrated loci on the sex 
chromosome number 24, as shown in Fig. 5D. A total of 66 integrated sites were found 
on the chromosome Y and 2 on the chromosome X. When combined and normalized, 
the distribution of integrated loci on the sex chromosomes was obtained. Comparing the 
expected distribution with the actual distribution, it was found that the hepatitis B virus 
is more likely to integrate into the chromosome Y(χ2

= 7.503 > 3.84 , P = 0.006 < 0.05 ), 
which corresponds to the conclusion that the hepatitis B virus is more likely to invade 
the male body.

Distribution of HBV integration on genes and chromosomes

To further explore the mechanism of HBV integration-induced carcinogenesis, we 
investigated the distribution of integration sites. It was observed that HBV had a high 
integration frequency in the 220 M-225 M interval of chromosome 2, the 0 M-5 M inter-
val of chromosome 5, the 45 M-50 M interval of chromosome 8, the 20 M-25 M interval 
of chromosome 17, and the 35 M-40 M interval of chromosome 19 (Fig. 6A, B). Nota-
bly, these intervals mainly involved regions associated with liver cancer, such as cancer 
driver genes, tumor suppressor genes or telomeres [11].

Through setting a threshold (with integrated site number greater than or equal to 5), 
33 high-frequency integrated genes were selected, as shown in Fig.  6C. Further com-
parison of these 33 high-frequency integrated genes with liver cancer-related NCG [23] 
and HCCDB [24] databases revealed that 32 of them were present in these databases. 
Among these 33 high-frequency integrated genes, the integrated site number of FN1, 
KMT2B, and TERT was much higher than that of other genes. FN1 is located in the 
region of 210 M-230 M on chromosome 2, and it is related to the expression of a protein 
that affects cell differentiation, proliferation, wound repair, and cell adhesion, among 
other processes. The abnormal expression of FN1 has been proven to be associated 
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with liver cancer [25]. Considering the high integration of HBV in the FN1 region, it 
can be inferred that the integration of the hepatitis B virus into the FN1 gene may influ-
ence protein expression, thereby promoting the development of liver cancer. KMT2B is 
located in the interval of 40 M-50 M on chromosome 19, and it is a gene that affects 
DNA repair and cell cycle, and at the same time is an important driving gene for liver 
cancer. TERT is located in the region of 0 M-5 M on chromosome 5, and it encodes tel-
omerase reverse transcriptase, which can maintain chromosome stability and affect cell 
differentiation and proliferation. The impact of TERT on liver cancer is speculated to be 
due to the integration of hepatitis B virus affecting the stability of chromosomes.

In addition, a high-frequency integration gene called PDCD6-AHRR was detected in 
the experiment, which is not included in the NCG and HCCDB databases. This gene, 
after excluding the 32 high-frequency integration genes found in the databases, may 
also play a role in the occurrence and development of HBV integration and liver cancer.. 
PDCD6-AHRR is a special gene formed by the rearrangement of two genes, PDCD6 and 

Fig. 6  Analysis of HBV high-frequency integration genes. A Distribution of HBV integration sites on human 
chromosomes. The integration amount of each scale was represented by a small bar graph, with colors 
divided into four gradients: red (high integration), blue (relatively high integration), yellow (relatively low 
integration) and green (low integration). B Distribution of HBV integration sites on genes. The chromosome 
regions where genes with integration sites were located and represented with light green bars, with 
the integration amount of genes represented by small blue bar graphs. C Integration frequency of 
high-frequency integrated genes



Page 10 of 18Qiao et al. BMC Bioinformatics          (2024) 25:177 

AHRR, and is a fusion gene. Among them, PDCD6 mainly affects various biological pro-
cesses such as cell apoptosis, division, and endoplasmic reticulum stability, while AHRR 
mainly affects immune response and other biological mechanisms. The recombination 
of these two types of genes into PDCD6-AHRR may affect the occurrence and develop-
ment of liver cancer, making it a valuable target for liver cancer research.

Through the analysis of high-frequency integration genes, it was found that HBV 
integration predominantly promotes the transformation of cells into liver cancer cells 
by affecting the expression of liver cancer driver genes, inactivating tumor suppressor 
genes, and changing the structure and stability of the genome. Subsequent proliferation 
of liver cells with integration sequences ultimately leads to the occurrence and progres-
sion of liver cancer.

Discussion
As HBV integrations may be specific biomarkers for prediction of clinical outcomes, 
However, rapid, reliable and stable HBV integration site detection processes are rare 
[26]. In this study, a new HBV integration site detection tool based on feature coding 
called ViroISDC is presented, which is a natural language processing method. By estab-
lishing data generation rules for the corpus, genetic sequencing data is transformed into 
a corpus-like natural language format, and feature coding is applied to the corpus. The 
encoder in the Transformer is used to extract semantic information and general rules 
from genetic sequencing data, and then perform integration site detection. ViroISDC 
demonstrates superior performance compared to other tools in terms of precision, 
recall, and F1-score for both real and simulated datasets, exhibiting remarkable stability 
and reliability. It is minimally affected by variations in sequencing depth and integra-
tion length. Besides, ViroISDC plays a significant role in understanding the interaction 
between HBV and the host genome, exploring the pathogenesis of liver cancer, and 
investigating the heterogeneity of liver cell carcinoma. Furthermore, the integration 
sites identified through ViroISDC’s genome sequencing data offer enhanced support and 
assistance for the diagnosis, personalized treatment, and prognostic evaluation of HCC.

Previously, studies on the integration preference of HBV on different chromosomes 
have shown that HBV integration into chromosomes 2 and 17 is more likely to result 
in male tumors [7]. In this study, a comprehensive analysis revealed that in cancerous 
tissues, HBV tends to integrate into chromosomes 5, 8, 17, 19, and 20, while in para-
cancer tissues, HBV prefers integration into chromosomes 17, 19, 20, and 22. Moreo-
ver, cancerous tissues exhibit a higher integration frequency compared to paracancer 
tissues. Consistent with previous findings [27], ViroISDC successfully detected HBV 
integration hotspots such as TERT and KMT2B, indicating the software’s accuracy in 
predicting integration sites. Additionally, besides the commonly reported HBV integra-
tion genes, this study discovered a significant number of HBV integration sites on the 
PDCD6-AHRR gene. Although not included in the NCG and HCCDB databases, this 
gene holds considerable value for understanding the occurrence and development of 
liver cancer. The distribution and frequency of HBV integration sites in human chro-
mosomes and genes suggest that HBV may integrate into regions related to liver can-
cer driver genes, tumor suppressor genes, and other pertinent areas. By influencing the 
expression of these liver cancer-related genes and the stability of the genome, HBV can 



Page 11 of 18Qiao et al. BMC Bioinformatics          (2024) 25:177 	

induce the transformation of normal cells into cancer cells. The subsequent proliferation 
and development of these transformed cells contribute to the progression of hepatocel-
lular carcinoma.

Besides, we also found that ViroISDC could be improved. First, the specific database 
used in this study to retrieve relevant reference sequences and gene information may 
not be completely comprehensive or accurate, which may result in some HBV integra-
tion sites not being detected. Then, this method uses an encoder in the Transformer 
architecture to extract semantic information and general rules. However, the extraction 
of semantic information may be affected by corpus data quality and feature encoding, 
which may introduce errors and uncertainties.

Regarding the future work, we are dedicated to designing a robust graph neural 
network model to investigate whether genes at HBV integration sites could serve as 
potential therapeutic targets for liver cancer. Notably, the research outcomes from the 
iGRLDTI [28] and FCAN-MOPSO [29] studies have provided promising insights into 
exploring HBV integration site genes as therapeutic targets for liver cancer. The former 
proposes an improved graph-based learning method that successfully solves the prob-
lems of over-smoothing and non-aggregation of information in the prediction process. 
The latter highlighted the advantages of a graph clustering algorithm, which shows bet-
ter accuracy and convergence on real complex networks of different sizes. Furthermore, 
GKLOMLI [30] pointed out that using network similarities to build neural networks can 
help comprehensively consider more entities and contextual information. Building upon 
these research advances, we aim to continue our in-depth exploration with the goal of 
developing a more precise and efficient graph neural network model, offering innovative 
strategies and methodologies for the treatment of liver cancer.

Conclusions
ViroISDC is a novel feature encoding-based tool for detecting HBV integration sites. In 
comparison with similar software, ViroISDC exhibits superior precision, stability, and 
reliability across various datasets. When employed for downstream analysis, ViroISDC 
proves invaluable in exploring HBV infection in the human body, holding significant 
implications for the diagnosis, treatment, and prognosis assessment of HCC.

Methods
Workflow of ViroISDC

ViroISDC is an HBV integration site detection pipeline based on feature encoding. Its 
core detection principle involves encoding the features in the CIGAR field and sending 
the resultant encoded word vector to an NLP model for integration site detection. The 
workflow of ViroISDC, as depicted in Fig. 7, is divided into three parts: data preproc-
essing, corpus data generation, and integration site prediction. The third part has two 
distinct phases, the training phase and the final application phase. The training phase 
performs training and prediction based on the divided dataset. The application phase, 
on the other hand, directly uses the trained model to predict samples and generate result 
sets for each sample.
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Sequencing data processing and corpus data generation

ViroISDC’s integration site detection model requires specific language data as input. The 
raw sequencing data cannot be used as input for the model as they are simply unor-
dered reads. Therefore, it is necessary to transform the raw sequencing data into corpus 
data. The processing flow of the original sequence was shown in Fig. 7A. This process 
was designed according to the method of Li et al. [31]. In brief, quality control of raw 
data was performed with Trimmomatic. The high-quality reads were aligned with the 
10,791 reference sequences of HBV (NCBI Genbank, 2022) to obtain reads related to the 
integration of HBV. The HBV-related reads were then aligned with the human reference 
sequence (GRCh37) to obtain the Human-HBV related reads.

To generate corpus data, a window of size 3 is opened, utilizing human reference 
sequences as coordinates. Within this window, the CIGAR field is extracted, and its con-
tents are concatenated to construct a corpus. The sliding step of the window is set to 1.

Corpus data feature coding

Although the corpora extracted in the previous text are sequences, they can be seen as 
a special language composed of sequence alignment features. Encoding this special lan-
guage and inputting it into an NLP model can unveil the relationships between sequence 
information and their expressions. However, a current challenge lies in the inability of 
computers to directly process human language or feature sequences and comprehend 
their semantics and meaning. In order to solve this problem, a way of encoding the fea-
ture sequence is proposed (Fig. 7B). Text data in NLP tasks exists discretely in the form 
of words or characters, so these words or characters can be encoded into vector form 
which is computable by computers. The commonly used encoding methods include 
k-mer encoding, one-hot encoding and word embedding [32].

The k-mer encoding is to divide the DNA sequence into subsequences of length k, and 
map each subsequence to a number or vector. However, due to the large size of virus and 
human genetic data, the dictionary will be too large and the computing and storage over-
head will increase. One-hot encoding represents each base (A, T, C, G) with an orthogo-
nal vector, in which only one element is 1 and the other elements are 0. This means that 

Fig. 7  Overview of ViroISDC workflow. A Data preprocessing. B Corpus data generation. C Integration site 
prediction
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in this encoding method, different amino acids or genes are completely independent and 
have no correlation with each other because they are encoded into different, orthogonal 
vectors. Therefore, it is precisely because of the nature of one-hot encoding that it is 
impossible to express the correlation between amino acids or genes. If we hope to cap-
ture correlations between amino acids or genes, we need to use better coding methods.

The encoding method we proposed in this article not only improves the seman-
tic effect, but also effectively shortens the length of the sentence. ViroISDC considers 
the semantic information among different comparison features and utilizes Bert’s pre-
trained model to convert the vocabulary of each feature sequence into a word vector. 
This process is known as word embedding, which enables the mapping of discrete tex-
tual words to a low-dimensional space vector representation, as shown in Fig. 8A. The 
resulting low-dimensional vector not only captures the meaning of the word itself but 
also encompasses the positional relationship between words and the relationships 
among words within the sentence. The word vectors in this paper comprise three com-
ponents: Token Embedding, Segment Embedding, and Position Embedding. Token 
Embedding represents the vector representation of the words in the feature vocabulary, 

Fig. 8  Details of corpus data feature coding and ViroISDC structure diagram. A Composition of word 
embedding. B Overall model structure diagram of ViroISDC and details of the long head attention
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learned during the model’s pre-training process. On the other hand, Segment Embed-
ding serves as sentence embedding, enabling the distinction between the encoding of 
different sentences. Lastly, Position Embedding provides positional embedding, comple-
menting the temporal information of the text.

CIGAR is a value that describes the comparison state, which has 9 states. Among 
them, the states related to HBV integration are mainly M (complete match), S (soft clip-
ping), and H (hard clipping). Other states can be considered as noise for HBV integra-
tion site detection. In order to make ViroISDC more accurate in detecting integration 
sites, noise is uniformly set as O (representing others) in ViroISDC. Additionally, the 
sequencing depth fluctuates greatly due to factors such as different sample sizes during 
sample collection, varying lengths of sequences, and different numbers of PCR ampli-
fications. The length of the linguistic data also varies, ranging from approximately 30 
to 3000 words. However, NLP generally performs poorly on lengthy sentences, such as 
Bert, which yields better results when processing sentences consisting of fewer than 512 
words. Consequently, ViroISDC employs a method that involves extracting significant 
features for sentence encoding. Specifically, it involves two steps: word formation and 
extracting salient features.

Firstly, word formation combines every five words to form a new word. For instance, 
"MMMSS HHSMM" is two newly-formed words. This method reduces the original 
sentence by five times immediately. However, word formation can lead to a new prob-
lem—an explosion in vocabulary. The use of M, S, H, and O to form words theoreti-
cally produces 45 different types of new words. Many of these newly created words rarely 
appear in a sentence, and adding them to the vocabulary will only complicate the prob-
lem. Based on the characteristic of using PCR amplification of data during sequenc-
ing, rules were defined to extract significant features after word formation, as shown in 
Table 1. If a word is composed of multiple different features, the effects of each feature 
vary. Judgments are made in the order of H > S > O > M. Specifically, if a word contains 
the H feature, it is set to H. If a word does not contain the H feature but has the S fea-
ture, it is set to S. Mixed-type words are handled similarly. If a word is composed of the 
same feature, it becomes a word of the same type, and the word is set to the value of that 
feature.

The rules set above are actually equivalent to a kind of limiting maxpooling opera-
tion, which can effectively reduce the size of the vocabulary and also has the function of 
eliminating noise and highlighting variable features.

Integrated site detection model construction

ViroISDC is an NLP-based HBV integration site detection pipeline, with its core being 
an NLP model that incorporates the encoder part of the Transformer [33], as depicted 

Table 1  Word formation rules

Word type Rules

Hybrid H > S > O > M

Homotype Set to the characteristics that 
make up the word, such as H, 
S, M, O
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in Fig. 8B. The model takes a series of corpora as input, which undergoes custom rule-
based pooling and embedding layers before being fed into four encoder layers. Finally, a 
fully connected layer is applied for classification on the hidden layer of the last encoder. 
Within the encoder, there are three main stacked structures: multi-head self-attention 
layer, normalization layer, and feed-forward layer.

The multi-head self-attention layer is the pivotal component of the entire model, capa-
ble of capturing the interdependencies between different spatial positions in a sentence. 
ViroISDC employs 8 attention heads, which effectively create 8 learning spaces, each 
capable of attending to distinct key points.

In the Fig. 8B, X represents the word vector matrix in the input network, with each 
row representing the embedding of a word vector. The input vector X is used to com-
pute the query Qi , key Ki , and value Vi (where i denotes the i-th attention head) through 
Eq. (1).

The weight matrices WQ
i ,WK

i  and WV
i  correspond to the three linear transformation 

operations. By plugging in the values of Qi , Ki , and Vi into Eq. (2), we can calculate the 
output Zi for the i-th attention head in the attention space.

The correlation between vectors in matrices Qi and KT
i  is computed through inner 

product, representing the interrelation among the vectors (and the interrelation among 
individual words). After applying softmax normalization, the resulting values are mul-
tiplied by matrix Vi to obtain the expression matrix Zi for each dimension. The outputs 
from the 8 attention heads are concatenated and multiplied by the weight matrix W 0 of 
a linear layer to yield the output Z of the multi-head self-attention layer, as depicted in 
Eq. (3).

Model training

The model training process consists of two main stages: the first stage involves pretrain-
ing the bioinformatics language model, and the second stage involves fine-tuning the 
model for the integration site detection task.

During the pretraining stage, ViroISDC utilizes a large-scale of unlabeled base-pair 
alignment information for unsupervised pretraining, creating a specialized pretraining 
model for bioinformatics. The pretraining process primarily includes random feature 
masking and next-site prediction, enabling the pretraining model to understand the spe-
cific language of sequence alignment information. The HBV integration site detection 
model is then fine-tuned based on this pretraining model. The integration site detection 
task is a dichotomous problem, distinguishing integration sites from regular sites. The 
training data for the model consists of 6,834 manually annotated integration site sam-
ples. Initially, these samples are used as positive instances, and then random regular site 

(1)Qi = XW
Q
i , Ki = XWK

i , Vi = XWv
i

(2)Zi = Attention(Qi, Ki, Vi) = softmax(
QiK

T
i

dk
)Vi

(3)Z = Concat(Z0, Z1, Z2, . . . ,Z7)W
0
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samples are extracted from the upstream or downstream regions of these integration 
sites to serve as negative instances. Finally, positive and negative instances are mixed in a 
1:1 ratio to create the benchmark dataset. During the fine-tuning stage of the ViroISDC 
model training, the dataset is split in a 6:2:2 ratio, as illustrated in Fig. 7C.

Evaluation metrics

In this experiment, the detection performance of ViroISDC in integration sites was 
evaluated using three metrics: precision, recall, and F1-score. Precision, defined as TP/
(TP + FP), represents the ratio of true positive integration sites predicted by the tool 
compared to the total predicted integration sites. Recall, defined as TP/(TP + FN), rep-
resents the ratio of true positive integration sites predicted by the tool compared to the 
actual integration sites. F1-score, a harmonic mean metric, combines information from 
both precision and recall to evaluate the overall performance of the tool in integrating 
the two metrics. It is calculated as 2*Precision*Recall/(Precision + Recall). Based on 
these 3 metrics, we compared ViroIDSC with four commonly used tools: Lumpy, Pindel, 
Seeksv and SurVirus.

Dataset

Four datasets, consisting of three real datasets and one simulated dataset, are utilized 
in this study to comprehensively evaluate the performance of ViroISDC, as shown 
in Table 2. The first dataset was obtained through Illumina sequencing and was origi-
nally published by the Beijing Institute of Genomics (NCBI BioProject accession: 
PRJNA298941). This dataset contains sequencing data from cancer tissue and par-
acancer tissue of 426 HCC patients. The second and third datasets, Cap and Plasma, 
were generated in collaboration with the biological  laboratory at Beijing University of 
Chemical Technology. These datasets include sequencing data from cancer and para-
cancerous tissues, as well as six sets of plasma sequencing data.The sequencing data of 
the second and third datasets were under the Bioproject ID PRJNA1011497 and they 
can be retrieved in the SRA (Sequence Read Archive, https://​www.​ncbi.​nlm.​nih.​gov/​
sra) with run SRR26172074, SRR26172075, SRR26172076, SRR26172077, SRR26172078, 

Table 2  Plasma and cap datasets

This table provides details of the second and third data sets. Among them, the types of Cap2_P1 and Cap4_P2 are Hepatitis 
B virus capture sequencing in liver tumor tissue, and the types of Cap1_T1 and Cap_T2 are Hepatitis B virus capture 
sequencing in liver paracancer tissue

Dataset name Type Source Strategy Selection Layout

SRR26172074 Plasma6 Genomic Targeted-capture Random Paired

SRR26172075 Plasma5 Genomic Targeted-capture Random Paired

SRR26172076 Plasma4 Genomic Targeted-capture Random Paired

SRR26172077 Plasma3 Genomic Targeted-capture Random Paired

SRR26172078 Plasma2 Genomic Targeted-capture Random Paired

SRR26172079 Plasma1 Genomic Targeted-capture Random Paired

SRR26172080 Cap4_P2 Genomic Targeted-capture Random Paired

SRR26172081 Cap3_T2 Genomic Targeted-capture Random Paired

SRR26172082 Cap2_P1 Genomic Targeted-capture Random Paired

SRR26172083 Cap1_T1 Genomic Targeted-capture Random Paired

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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SRR26172079, SRR26172080, SRR26172081, SRR26172082, and SRR26172083, respec-
tively. These datasets include sequencing data from cancer tissue and paracancer tissue, 
as well as six sets of plasma sequencing data, as shown in Table  2. Finally, the simu-
lated dataset was designed using wgsim (https://​github.​com/​lh3/​wgsim). The simulated 
dataset comprises 16 sample data based on 10,791 hepatitis B reference sequences. 
Four different depths of data were simulated, including 10x, 100x, 500x, and 1000x, 
with four integrated sequences of varying lengths (100  bp-500  bp, 500  bp-1000  bp, 
1000 bp-2000 bp, 2000 bp-3000 bp) for each depth, and each sample simulating 100 inte-
grated events. Using these datasets, a meticulous and accurate evaluation of ViroISDC’s 
performance can be conducted.
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