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Introduction
With the advancement of the next-generation sequencing techniques and the decrease 
in cost, it is now feasible to perform large-scale genome sequencing of thousands of 
individuals by large consortiums or even labs, generating large-scale genotype data con-
taining tens of millions of single-nucleotide polymorphisms (SNPs), such as the 1000 
Genome Project, UK Biobank and 3000 Rice Genomes Project [1–3]. Principal compo-
nent analysis (PCA) has been widely used in the study of population genetics for many 
years [4]. Existing popular tools for implementing such analysis include toolkits such as 
TASSEL, GAPIT, PLINK2 and GCTA [5–8]. However, these tools may not be suitable 
for the analysis of billion-level SNPs due to a large computational resource consumption 
and some of them require format conversion and/or multiple steps to finish. Moreover, 
advanced analysis based on the PCA result for large-scale samples, such as clustering 
and visualization, is also needed. To this end, we developed a dedicated and user-friendly 
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PCA analysis tool, VCF2PCACluster. This tool can easily calculate Kinship matrix and 
perform PCA and clustering analysis, and yield publication-ready 2D and 3D plots based 
on the variant call format (VCF) formatted SNP data in a fast and low-memory usage. 
Specifically, the memory usage of this tool is independent of the number of SNP sites 
and running time is as fast as the performance of PLINK2 and GCTA, making it more 
applicable in a large-scale genome-wide study with tens of millions of SNPs.

Implementation
VCF2PCACluster, a command-line tool, is implemented using programming languages 
C++ and Perl. The C++ was used for the calculation process and Perl was used for visu-
alization. This tool enables its users to provide only the general VCF formatted input, 
and rapidly and directly yields the results of Kinship matrix, PCA, clustering and visu-
alization in publication-ready 2D and 3D plots. It consists five major steps (Fig. 1) and is 
briefly described as followings.

Genome sequencing in population study usually generates tens of millions of SNPs 
across thousands of samples, making the PCA analysis heavily depend on the extensive 
computer resource, such as CPU and memory. Despite the efforts of PLINK2 and GATC 
to optimize memory usage with the use of two bits to store genotype, the PCA analysis of 
thousands of samples and billions of SNPs still requires hundreds of gigabytes (GB). To 
address this challenge, we have adopted a processing strategy that operates in a line-by-
line manner, which involves reading a site (line) and subsequently calculating the differ-
ence between pairwise samples. The results are stored in two arrays ([sample × sample]) 
for final calculation of the kinship matrix. Consequently, the memory usage during the 
execution is influenced solely by the sample size, rather than the number of SNPs. For 
CPU running time, it is limited by both the number of samples and SNPs. To improve 
efficiency, we employed a two-dimensional array to store frequently accessed data 
and utilized multi-threading through the OpenMP library [9] to calculate the Kinship 
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Fig. 1  Overview of the VCF2PCACluster and PCA visualization of sample clusters. A Five major modules 
implemented in the VCF2PCACluster, SNP filtering, Kinship estimation, PCA analysis, Clustering and 
Visualization. The VCF formatted data (-InVCF) or Kinship matrix (-InKinship) could be adopted by the 
VCF2PCACluster. B and C Visualization of PCA and clustering result in 2D and 3D plots on human Chr22 SNP 
data from 1000 Genome Project. Colors indicate different clusters determined by VCF2PCACluster. Shapes 
indicate prior knowledge of geographic population (AFR African Region, AMR Region of the Americas, EUR 
European Region, EAS East Asian and SAS South Asian)
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matrix. By using approaches, VCF2PCACluster is capable of handling a large-scale SNP 
data with fast processing speed and minimal memory consumption.

Due to the imperfect of raw genotype data, obtaining a high-quality of SNP data is 
the first key step to generate reliable results in population genetic studies. Typic filter-
ing criteria include a certain ratio of SNP missingness, low call rate, Hardy–Weinberg 
equilibrium (HWE) and low minor allele frequency (MAF) [10]. For SNP filtering, non-
biallelic sites (singleton and multiallelic) and indels will be discarded. Additionally, users 
may optionally exclude sites with low minor allele frequency (MAF), missingness per 
marker (missing) and concordance with Hardy–Weinberg equilibrium (HWE) by using 
parameters (e.g., -MAF 0.05 -Miss 0.25 -HWE 0) based on VCF input format.

For Kinship estimation, we have implemented five typical methods: Normalized_IBS, 
Centerred_IBS [11], IBSKinshipImpute, IBSKinship [12] and p distance [13]. Normal-
ized_IBS and Centered_IBS could improve PCA by considering genetic relatedness 
and mitigating confounding factors such as scale differences and population structure, 
resulting in enhanced precision, stability, and interpretability of the PCA analysis. Thus, 
we recommend that the first two kinship methods should be priority to applications. 
For PCA analysis, VCF2PCACluster utilizes the external eigen library [14] to compute 
PCA and eigenvalues based on either the previously calculated kinship matrix or one 
provided by the users. In terms of clustering step, we have implemented three clustering 
methods: EM-Gaussian [15], K-Means [16] and DBSCAN [17] based on the top three 
principal components (PCs). By default, we initially detected the best K (defining the 
number of clusters) and centroid using K-Means for the initial bootstrap and then per-
form 1000 bootstraps to determine the best clusters using EM-Gaussian. Considering 
the requirement of adjusting clustering methods and parameters for the best cluster-
ing results applied in different scenarios, we also provided a parameter (-InKinship) for 
users to re-cluster directly from previously obtained kinship matrix result. Finally, we 
offer two custom Perl scripts for users to generate publication-ready 2D and/or 3D PCA 
and clustering plots.

In addition, VCF2PCACluster enables users to perform analysis on a subset of sam-
ples defined in the VCF input using the (-InSubSample) parameter. It also enables com-
parisons between the prior sample group labels with the unsupervised clustering result 
through the (-InSampleGroup) parameter. For more details, please refer to our manual 
deposited on GitHub.

Application
To evaluate the accuracy and performance of VCF2PCACluster, we utilized the SNP 
data from the Chr22 of the 1000 Genome Project, which contains a total of 1,055,401 
SNPs across 2,504 samples. The test was completed in approximately 7  min with 16 
threads and the running memory usage was about 0.1 GB. We compared the PCA result 
with that generated by GCTA and PLINK2, and found that they were identical. Based 
on the SNP clustering results, four clusters were inferred using VCF2PCACluster. Top 
two principal components (PCs) and three PCs were used to visualize the clustering 
result respectively (Fig. 1B,C). We could observe obvious four distinct populations from 
African (AFR), Asian (EAS/SAS) and European (EUR) and Americas (AMR) from the 
top three PCs (Fig. 1C). The consistency between the clustering result and predefined 
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groups was measured to be 0.995, indicating a high accuracy of VCF2PCACluster in dis-
tinguishing subpopulations.

We also compared VCF2PCACluster with other popular tools (PLINK2, GCTA, Tas-
sel, Gapit3) using the same test data in terms of the input format, pre-processing, func-
tion, and performance (Table 1). Both Tassel and Gapit3 used the most peak memory 
usage (> 150 GB) and a large time consumption (> 400 min), indicating that they are not 
suitable for analyzing large-scale SNP data. Both VCF2PCACluster and PLINK2 could 
adopt the general VCF format as input and have a similar optional pre-processing for fil-
tering SNPs with low MAF, a high ratio of missing, and HWE. They exhibit comparable 
time consumption, but VCF2PCACluster demonstrates the smallest running memory 
usage (~ 0.1 GB) and implements additional functional modules including clustering and 
visualization. Next, we conducted a test on a very large dataset with a combination of 
SNP data on chromosomes 1–22 from the 1000 Genome Project, totaling of 81.2 million 
(M) SNPs. The results showed extremely low memory usage (~ 0.1 GB) and successfully 
finished in about 610 min with 8 threads using VCF2PCACluster. Conversely, PLINK2 
required a larger memory usage (> 200 GB) and failed to complete the job. In addition, 
we also tested on a large-scale SNP dataset in rice with 3  k samples and 29  M SNPs 
[18]. We demonstrated that VCF2PCACluster can efficiently produce results, requir-
ing 181 min and only 0.1 GB memory. In comparison, PLINK2 took 100 min and con-
sumed a massive 257  GB of memory. These cases highlight the memory efficiency of 
VCF2PCACluster, even when analyzing tens of millions of SNPs. Detailed comparisons 
in accuracy and efficiency between VCF2PCACluster and other tools were described in 
the manual deposited on GitHub.

Discussion and conclusion
PCA is an important statistic method for exploring population structure. Among the 
existing tools that implement similar analyses, VCF2PCACluster shows the best perfor-
mance, especially in terms of memory usage and the ability to quickly re-cluster based 
on the prior analyses. Next, we will further improve VCF2PCACluster by adopting addi-
tional input formats, such as PLINK2, and implementing more clustering algorithm for 
users to choose from. Since its initial release one year ago, four studies have used VCF-
2PCACluster (previously known as MingPCACluster) [19, 20] to conduct their analyses 
and visualize the results.

Table 1  Comparison of the VCF2PCACluster with other tools

Software Input SNP 
filtering

Functions Performance

Kinship PCA Clustering Visualization Memory Time 
consumption

VCF2PCA-
Cluster

VCF Maf, Missing, 
HWE

Yes Yes Yes Yes  ~ 0.1 GB  ~ 7 min (16 
threads)

GCTA​ Plink2 Maf Yes Yes No No  ~ 1.5 GB  ~ 7 min (16 
threads)

PLINK2 VCF Maf, Missing, 
HWE

Yes Yes No No  ~ 1.5 GB  ~ 2.47 min (16 
threads)

TASSEL VCF/hmp Maf Yes Yes No No  > 180 GB  > 400 min

GAPIT hmp no No Yes No Yes  > 150 GB  > 400 min
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In summary, VCF2PCACluster is a very simple and user-friendly software that enables 
users to perform PCA and clustering analyses using general VCF formatted SNP data for 
all or a subset of samples. It also facilitates for easy and rapid adjustment of clustering 
results from previous runs or external Kinship result. Notably, it can efficiently handle 
large-scale SNP data in a fast and memory-efficient manner, making it a suitable PCA 
and clustering software even for moderately powered computers.

Availability and requirements
Project name: VCF2PCACluster.

Project home page: https://​github.​com/​hewm2​008/​VCF2P​CAClu​ster
Operation system(s): Linux or Mac OS.
Programming language: C/C +  + 
Other requirements: gcc-4.9 or higher with OpenMP.
License: MIT license.
Any restrictions to use by non-academics: None.
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