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Abstract 

Background: The application of reduced metagenomic sequencing approaches 
holds promise as a middle ground between targeted amplicon sequencing and whole 
metagenome sequencing approaches but has not been widely adopted as a tech-
nique. A major barrier to adoption is the lack of read simulation software built to han-
dle characteristic features of these novel approaches. Reduced metagenomic sequenc-
ing (RMS) produces unique patterns of fragmentation per genome that are sensitive 
to restriction enzyme choice, and the non-uniform size selection of these fragments 
may introduce novel challenges to taxonomic assignment as well as relative abun-
dance estimates.

Results: Through the development and application of simulation software, readsynth, 
we compare simulated metagenomic sequencing libraries with existing RMS data 
to assess the influence of multiple library preparation and sequencing steps on down-
stream analytical results. Based on read depth per position, readsynth achieved 0.79 
Pearson’s correlation and 0.94 Spearman’s correlation to these benchmarks. Application 
of a novel estimation approach, fixed length taxonomic ratios, improved quantification 
accuracy of simulated human gut microbial communities when compared to esti-
mates of mean or median coverage.

Conclusions: We investigate the possible strengths and weaknesses of applying 
the RMS technique to profiling microbial communities via simulations with readsynth. 
The choice of restriction enzymes and size selection steps in library prep are non-trivial 
decisions that bias downstream profiling and quantification. The simulations inves-
tigated in this study illustrate the possible limits of preparing metagenomic libraries 
with a reduced representation sequencing approach, but also allow for the develop-
ment of strategies for producing and handling the sequence data produced by this 
promising application.
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Background
Since its first application, reduced metagenomic sequencing (RMS) has remained a 
niche approach to profiling microbial communities. First coined by Liu et  al., RMS is 
the application of reduced-representation sequencing (RRS) to metagenomic libraries, 
adopting steps modified from the original ddRADseq protocol [1, 2]. Metagenomic pro-
filing of human samples comparing RMS and whole genome sequencing (WGS) yielded 
similar microbial profiles, and concerns of GC content bias weren’t detected. Three fur-
ther studies have shown the potential for RMS to yield similar results or even outper-
form the traditional 16S and WGS approaches [3–5].

Although traditional approaches of amplicon and WGS can be effective for studying 
community structure, they exist on extreme ends of sequencing efforts and the bene-
fits of each may exist in a middle ground. The conserved gene regions used in amplicon 
sequencing, often the 16S or ITS gene, can create bias towards some community mem-
bers due to the primers selected and often these marker gene targets lack the resolution 
to consistently identify one species or strain from another [6]. WGS increases resolution 
but is comparatively expensive for deep sampling of rare taxa. Continuous, overlapping 
reads originating from closely related taxa may be computationally challenging to assign. 
Comparable to genotyping by sequencing (GBS), RMS reduces a genome into sampled 
DNA fragments by using one or more restriction enzymes [7]. These subsetted frag-
ments represent predictable, targeted loci within a genome and function as hundreds of 
markers within each microbial genome allowing for species and even strain-level iden-
tification not found in amplicon sequencing alone. RRS increases per-locus sequenc-
ing depth for these fragments and allows for more samples to be analyzed in the same 
sequencing run, improving sequencing accuracy and lowering the per-sample cost of 
sequencing [1, 8, 9]. Unlike the original application of reduced representation sequenc-
ing for GBS, which produces fragments from the genome of an individual, RMS creates 
fragments from many unknown source genomes into a single pooled sequencing run.

Despite the potential benefits of RMS, the ability of this approach to accurately 
quantify at the species and strain level has not been tested at scale, possibly hindering 
adoption by metagenomics researchers. A major caveat to the RMS approach is that 
restriction enzyme motifs are enriched in a taxa-dependent manner [3]. Genome size, 
which can range over an order of magnitude in bacteria, as well as the varying degrees 
of sequence conservation among closely related microbes may complicate RMS quanti-
fication [10]. For example, genomic loci yielding RMS fragments may be variable even 
among closely related individuals, as a single base mutation altering a restriction cut site 
can lead to “allelic dropout” [11]. The degree to which this variation affects taxonomic 
identification and determination of relative abundance of community members has not 
been studied deeply. Every community member comprising the metagenomic sample 
will yield a unique distribution of fragment lengths.

Further complicating RMS profiling, sequencing effort (i.e. total read count) and size 
selection constraints may significantly impact the taxa included in the final sequencing 
library. Both PCR amplification and fragment size selection steps will affect the prob-
ability of a given DNA fragment surviving into the final sequencing reaction in a size-
dependent manner with possible PCR biases dependent on template length [12, 13]. 
Gel or bead mediated size selection is a critical step in RRS library design that helps to 
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remove adapter dimers and optimize flow cell performance, and so remains an unavoid-
able library preparation step in most cases. An alternative RRS approach using isolength 
(type IIB) restriction enzymes has been proposed as a potential solution to this issue of 
variable fragment length [14, 15]. Using a single enzyme that produces constant frag-
ment lengths frequently across the genome may create detailed fingerprints of genomic 
communities without size selection steps, assuming adapter dimers can be reduced. 
Normalizing for the non-uniform read depths associated with a single organism is a task 
that existing metagenome profiling software aren’t designed to handle.

In applications such as RMS, where existing short read approaches are being used in 
novel ways, it may be difficult to gain traction because the features of the data are so 
understudied for the intended application. Spending money to develop new experimen-
tal techniques can be a highly risky endeavor, and it also requires the development of 
custom software tools and statistical approaches necessary to analyze this new form of 
data. In instances such as these, simulation can be useful to predict and overcome arti-
facts from library prep that could not be anticipated or otherwise measured without a 
ground truth. Capturing the nuances of RMS behavior under different conditions is a 
necessary step in understanding its application, therefore, we introduce the software 
readsynth as a simulation aid to researchers in considering these promising alternative 
approaches to sequencing metagenomes. Readsynth simulates read count constrained 
metagenomic sequence data based on pre-assembled genomes and user-defined com-
munity compositions along with multiple library preparation parameters.

In this study, both real and simulated RMS libraries are investigated to understand 
the influence of non-uniform fragment sizes and possible molecular and computational 
considerations that might be used to overcome these biases. Bias in fragment lengths 
may be occurring due to the biology of the individual community members being sam-
pled and/or the technical library preparation. These factors prevent the total numbers 
of reads mapped to reference genomes from being directly used for calculating relative 
abundance. Our proposed solution uses the fixed length taxonomic ratio (FLTR) of read 
depths occurring within a non-uniform fragment length distribution. Barring the pres-
ence of strong GC bias, the ratio of two taxa should remain constant within all fragment 
lengths where both taxa are present. We first benchmark readsynth’s ability to faithfully 
capture features of mock community data. To demonstrate the utility of readsynth simu-
lations, we then investigate this novel FLTR quantification approach that may overcome 
some of the challenges produced by non-uniform fragment distributions. Upon find-
ing the library conditions that produce the best resolution, we consider the ability of 
these approaches when the search space includes a full database of all available reference 
genomes.

Implementation
Simulation software overview

Readsynth was developed to simulate Illumina short read libraries to assess the com-
positional abundance of highly custom communities under multiple reduced sequenc-
ing conditions. Readsynth is a command line software package written in Python and 
C++ that uses commonly maintained statistical packages and consists of a digestion, 
size-selection, and read-writing stages (Fig.  1). The software was written to be highly 
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customizable across three categories: (1) microbial community composition, defined 
by input genomes and their relative abundance; (2) experimental parameters, includ-
ing reduced library approach, enzyme digestion rates, expected fragment length distri-
butions, and custom adapter design, and (3) sequencing parameters, such as total read 
number, read length, and base quality value profiles.

Digestion

Readsynth first reads each input genome assembly individually to capture the set of pos-
sible fragments and calculate the probability of each sequence fragment surviving to the 
final library. Given a user input set of IUPAC restriction site motifs, overlap-tolerant reg-
ular expression (regex) searches are performed to exhaustively detect all possible cleav-
age sites and define fragments within the expected size-selection distribution. Fragments 
resulting from any combination of palindromic restriction enzyme motifs are modeled 
probabilistically to account for partial enzyme digestion. The probability of a fragment 
remaining at the end of digestion is calculated based on the probability of an enzyme cut 
producing the necessary forward and reverse adapter-boundary sites, adjusted accord-
ingly for fragments harboring internal cut sites.

The per-fragment probability is a function of enzyme cleavage occurring at both ends 
of a sequence based on a user defined enzyme cut efficiency (c). Sequences that harbor 
greater numbers of internal cut sites (i) are less frequently represented as a sequenced 
read. The probabilities for each fragment length are then summed, approximating the 
expected fragments given a single genome copy for each genome in consideration.

Size selection

To simulate size selection, each fragment’s post-digestion probability is adjusted based 
on multiple additional factors affecting its representation. First, the expected fragment 
counts for each genome are scaled by their proportional abundance, as defined in the 
abundance table. The combined distribution of digested fragment lengths for all input 

Pr fragment =

1 ifc = 1andi = 0

c2(1− c)i otherwise

Fig. 1 Overview of readsynth inputs and flow of data. Necessary input files (shown in pink) are a collection 
of genome files and a corresponding abundance table for each. Output files include per fragment count 
estimates and the final, paired-end read fastq files
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genomes then undergoes size selection. The counts of the digestion distribution are used 
to scale a Gaussian probability density function at a given length, x, and this intersec-
tion of sample spaces defines the final size selection distribution (Fig. 2). This approach 
follows the size variability expected in gel-based size-selection equipment (e.g., SageSci-
ence BluePippin) at the narrow and broad range selection techniques while preventing 
artificial inflation of reads in lower abundance than produced by the Gaussian curve [1]. 
To simulate the hardware-imposed limitation on the composition of metagenomic frag-
ments, the input read number (n) is divided evenly amongst the resulting size-selected 
distribution of the digested metagenome.

Error modeling

Readsynth applies a straightforward substitution error model to every read using ran-
domly sampled Q scores from any existing fastq file, with several publicly available pro-
files to select from. Phred-like error probability rates from the sampled Q scores are used 

Fig. 2 Digestion distribution of reduced metagenome sequencing (RMS) fragment lengths (bp) A after 
simulated enzyme fragmentation, counts represent expected fragment frequency with 1X genome coverage; 
B final read counts of size-selected fragments from the intersection of a Gaussian normal (μ: 150 bp, σ: 50) 
and A, scaled to the count at length 100 bp from A. Bar colors indicate individual bacterial genomes present 
in the simulated community



Page 6 of 18Kuster and Staton  BMC Bioinformatics          (2024) 25:191 

to mutate each nucleotide base to a non-self modification using pseudo-random number 
generation. Simulated fragments that are shorter than the simulated read length resulted 
in expected adapter contamination in data output (Supplementary Fig. 1), and users may 
provide any number of custom-designed adapters with specific overhangs.

Software benchmarking

In order to benchmark the simulation accuracy of readsynth, we use existing RMS data 
as a ground truth. The loci-specific enrichment of reads as well as the similarity in taxo-
nomic profiles between real and simulated reads are used as performance metrics. Two 
previously sequenced mock community data sets produced with RMS approaches were 
considered. These communities used standardized concentrations of each community 
member, making them ideal for comparison with simulated reads. The first dataset from 
Snipen et  al. consists of a Human Microbiome Project mock community of 20 bacte-
rial strains (BEI HM-782D) digested using the restriction enzymes EcoRI and MseI [5]. 
To simulate the abundance of each taxon, the input abundance table used the recipro-
cal of the ribosomal copy number determined from the ribosomal RNA operon copy 
number database [16]. The second dataset from Sun et al. used a separate community of 
20 bacterial strains (ATCC MSA-1002), which was assumed to have even genomic copy 
number [14]. This dataset was created using the type IIB restriction enzyme BcgI which 
produces short fragments with no length variation.

Extracting sequencing features from real and simulated mock communities

Sequence reads from the existing mock communities were adapter trimmed using Cuta-
dapt 4.1 [17]. Reads were then mapped against each of the community member refer-
ence genomes using BWA MEM (Burrows Wheeler Aligner 0.7.17) [18]. Samtools 1.15.1 
was used to select only paired end reads with the appropriate orientation. The Samtools 
stats and depth commands were used to summarize the read lengths as well as the per-
position depth of all aligned reads [19]. Using positional information from these reads, 
a custom fragment length distribution was estimated for use in simulation. The count 
ratio of fully digested fragments to the larger fragments immediately encompassing 
them (r) was used to estimate the cut efficiency (c) of enzyme digestion except for the 
case of complete digestion in which c = 1. In cases of incomplete digestion, following the 
per-fragment probability model, fragments containing internal cut sites will occur less 
frequently than their contained fragments such that r must be greater than 1.

Only fragment lengths in the range of 100  bp to 450  bp were used to estimate cut 
efficiency, as these were observed to be less constrained by size selection and therefore 
more reliable in preserving true read ratios (Supplementary Fig. 2). Aligning community 
mixtures of many taxa against individual reference genomes in BWA MEM returned 
many reads that aligned to multiple genomes (Supplementary Fig. 3). Further, variability 
between the published reference sequence and the real sequence data resulted in the 
rare presence of RMS fragments not reproducible in simulation. In order to make mean-
ingful comparisons between the real and simulated data, custom Python scripts were 

c =

{

(r−1)
r 1 < r < ∞

1 completedigestion
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used to extract positional information from high quality read alignments in the sam-for-
matted file in order to preserve the fragment size distribution while removing duplicate 
alignments.

Simulation was performed using fragment size distribution, enzyme cut efficiency, and 
Q score profile derived from the real sequence data. Although we expect these derived 
inputs to most closely resemble the real data, additional simulations were run to test 
the importance of fragment size distribution and enzyme cut efficiency. Three fragment 
length distributions were considered to measure the impact of size selection. The first 
was created using the exact fragment counts extracted as a custom.json file from the 
extracted sequence alignments. The second simulated size selection using the mean 
and standard deviation from the samtools summary statistics to define the distribution 
shape. The third size selection distribution used identical standard deviation values, 
but with the mean fragment size increased by 100 bp. BWA MEM and Samtools were 
again used to map simulated reads to the reference genomes and the read depth at every 
expected fragment position was counted. Cumulative read depth across every position 
in the mock community was compared between real and simulated sequences using 
both Pearson and Spearman correlation.

Assessing compositional‑biases using simulation

Simulations of RMS sequencing reads were informed using the mock community and 
two representative gut metagenomic communities based on sequencing efforts from 
complex microbial samples. Mock community sequences from Snipen et al. (replicates 
SRR10199716, SRR10199724, and SRR10199725) were again used as a baseline to quan-
tify taxonomic abundances from a mixture of 20 bacterial taxa at known relative abun-
dance. Taxa were assumed to be approximately equimolar in ribosomal operon count 
as described in the product specifications. A single human stool sample (SRR5298272) 
prepared with RMS using NlaIII and HpyCH4IV was used to establish a microbial com-
munity with greater richness for simulation [2]. These biological sample reads were 
assigned putative taxonomic labels using Kraken2 and Bracken (Standard plus protozoa, 
fungi & plant database ‘PlusPFP’ June 2022) and resulting taxonomic identification num-
bers were used to download representative genomes from each of the 691 non-host hits 
[20, 21]. Finally, the OTU profile resulting from gut samples from 2,084 individuals from 
the Healthy Life in an Urban Setting (HELIUS) study served as a basis for simulating 
microbial communities with authentic taxonomic abundances [22]. Of the 744 OTUs, 
610 unique RefSeq genome references from the genus and species level served as the 
basis for simulation. When multiple OTUs from the same genus level were encoun-
tered, multiple species from this genus were selected based on genomes with full, major 
releases in GenBank, which included many highly similar strains to be simulated in the 
same community. All simulations were performed using the software readsynth (0.1.0; 
commit 88d8bb1).

To assess the sensitivity of RMS to capture rare taxa, metagenomes based on 
HELIUS communities were simulated using a series of increasing total read counts 
(1 ×  105, 1 ×  106, 1 ×  107, and 1 ×  108 paired end reads) and four combinations of 
restriction enzyme double digests. The combinations of restriction enzymes selected 
(EcoRI/AgeI, EcoRI/MseI, HhaI/AgeI, and HhaI/MseI) were chosen for the diversity 
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of the cut site frequency and GC content of the recognition motifs (Table 1). Addi-
tionally, a type IIB enzyme “BcgI” digest was simulated to assess the application of the 
resulting isolength fragments.

Paired end reads from each of the real and simulated datasets were aligned to a 
combined reference genome concatenated from all known members in the metagen-
ome using BWA MEM. Mapped reads with a MAPQ score of zero were removed to 
avoid reads that map closely to multiple reference genomes. Custom Python scripts 
(available at github.com/ryandkuster/readsynth_analysis) were used to recreate the 
original genomic fragments corresponding with each read pair based on the simulated 
start and end positions for each fragment produced in simulation. Only those frag-
ments harboring no internal cut sites were kept as incomplete digests are expected to 
unpredictably affect quantification and assessment of existing RMS data found these 
fragments to be rare. The observed count and corresponding taxonomic assignment 
were stored for each fragment.

We also assess the performance of RMS data when the reference database is not 
curated to only those references in the ground truth set, as is the case in most practi-
cal applications of metagenomic profiling. Reads simulated using taxa derived from 
the Liu et al. RMS stool sample dataset were queried against the Kraken2 ‘PlusPFP’ 
database. We wanted to see if mapping and recreating fragments using an inclusive 
database would produce taxa count and abundance comparable with the input 691 
taxa simulated at even relative abundance.

Fixed length taxonomic ratios

The frequency of fragments was analyzed individually across the range of observed 
fragment lengths. Within each discrete fragment length, the ratios of the observed 
counts between all taxa present were calculated. The ratio was calculated iteratively 
by dividing the individual fragment count by the average fragment count for each of 
the other taxa present at that length (Fig. 3). These taxonomic ratios were then aver-
aged over all fragment lengths to produce an n x n matrix of all n taxa. Because many 
taxonomic ratios were missing, all columns in the taxonomic ratio matrix were scaled 
to the taxon with the greatest number of relationships to all other taxa. The row aver-
age of this scaled matrix was used to predict relative taxonomic abundance for all 
taxa.

Table 1 Combinations and expected characteristics of the restriction enzymes selected for double 
digests in HELIUS-inspired RMS simulations

Forward Reverse Frequency GC content

EcoRI (G/AATTC) AgeI (A/CCGGT) Rare—rare Even

EcoRI (G/AATTC) MseI (T/TAA) Rare—common GC poor

HhaI (GCG/C) AgeI (A/CCGGT) Common—rare GC rich

HhaI (GCG/C) MseI (T/TAA) Common—common Even
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Results
Performance of software

A hypothetical gut microbiome was established to assess the computational perfor-
mance of readsynth on larger metagenomic communities. Reference genomes derived 
from human gut samples (Liu et al. [2]) were downloaded and simulated under various 
input settings using a single core on a AMD EPYC 7F72 24-Core Processor (x86_64, 
3028.149 MHz) (Supplementary Table 1). The cumulative size of the metagenome ref-
erence sequences influenced the time to simulate, but choice of enzymes had the larg-
est impact on time and performance. Frequent, 4-base cutters produced many potential 
fragments to process, and use of less frequent motifs performed more efficiently. The 
most time consuming task tested, two 4-base cutters against 691 microbial genomes and 
the human genome, took 204 min; all other tasks took less than two hours.

Benchmarking of simulation accuracy

Spearman correlation captured a monotonic relationship between real and simulated 
read depths across the length of all 20 reference genomes in the mock community, and 
therefore was sensitive to differences in fragment presence or absence. The reads simu-
lated using 100 percent enzyme cut efficiency corresponded closely with the real data 
(Fig. 4 group E; r = 0.92 to 0.94), comparable to the covariance measured between repli-
cates of the real data. Simulation with a lower enzyme cut efficiency of 80 percent pro-
duced lower correlation with the real data, possibly resulting from increased novel loci 
surviving the fragmentation process (Fig. 4 group D, r = 0.66 to 0.68).

Pearson correlation was sensitive for comparing fragment read depths and was 
affected by noise in the data, as can be seen by variation within the replicates of 
the real sequencing datasets. The simulation that produced the highest read depth 

Fig. 3 Visual representation of read depths originating from hypothetical taxa x, y, and z present in a 1:2:1 
ratio. The left distribution shows fragments resulting from reduced sequencing under size selection or PCR 
fragment length biases. The differences in relative abundance estimates produced using mean and median 
read depths is compared with the taxonomic ratio approach (FLTR) introduced here. The ratio table on the 
right displays the averaged pairwise read depth ratios calculated individually within each fragment length. 
Even assuming no bias within each fragment length, the mean and median read depth estimates produce 
relative abundances that don’t account for variance in the size distribution, which is often not normal or 
uniform
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correlation coefficients between 0.76 to 0.79 used exact fragment size distributions 
informed by the real dataset (Supplementary Fig. 4, group A). Using a normal distri-
bution produced coefficients between 0.71 and 0.76 (groups B, D, E), suggesting the 
real data was approximated by applying readsynth’s normal distribution approach. 
The distribution with mean fragment lengths shifted only 100  bp longer affected 
read depth considerably with coefficients of 0.67 to 0.7 across replications (Sup-
plementary Fig.  4, group C). Simulations of the isolength dataset produced lower 
Pearson correlation (r = 0.56) but higher Spearman correlation (r = 0.97). The use 
of type IIB enzymes avoids variability in fragment length and while simulations with 
readsynth aligned closely with sequence presence-absence, simulation did not cap-
ture variability in the per-fragment depth.

Fig. 4 Spearman correlation coefficient of metagenome-wide, position-specific read depth for each of 
three replicates of real and simulated mock community sequencing. Real1-3 are the depth correlations of 
the real sequencing data replicates. Mapped read depth correlations from readsynth simulations are shown 
in A–E: A custom (.json) dictionary of fragment lengths derived from real sequence data and cut efficiency 
derived from real sequence data; B normal distribution of fragment lengths and cut efficiency derived from 
real sequence data; C normal distribution of fragment lengths with fragment mean increased by 100 bp and 
cut efficiency derived from real sequence data; D normal distribution of fragment lengths and cut efficiency 
reduced to 0.8; E normal distribution of fragment lengths and cut efficiency increased to 1
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Comparing Kraken2/Bracken profiles of real and simulated mock communities

The adapter-trimmed reads from the previously described mock community sequenc-
ing efforts were profiled using custom databases with Kraken2 (2.1.2) and Bracken (2.7). 
Raw reads mapping to each species-level identification was used as a metric of perfor-
mance between the real and simulated reads. Generally, simulations captured trends in 
the distribution of real sequence data accurately (Fig. 5). The simulations with increased 
fragment size selection and decreased cut efficiency (Fig.  5, groups C and D) caused 
larger shifts in predicted distributions. These changes are largely due to taxa-specific 

Fig. 5 Kraken2/Bracken percent abundance profiles based on read assignments of real and simulated mock 
community sequencing. Real1-3 are the relative abundances of mapped reads per species produced from 
the real sequencing data. Mapped read depth correlations from readsynth simulations are shown in A–E: A 
custom (.json) dictionary of fragment lengths; B normal distribution and cut rate; C normal distribution and 
cut rate with fragment mean increased by 100 bp; D normal distribution and cut rate with cut rate reduced 
to 0.8; E normal distribution and cut rate with cut rate increased to 1. All fragment distributions and cut rates 
estimated from real sequence data unless specified
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patterns of fragmentation where some community members, such as Phocaeicola vulga-
tus and Staphylococcus epidermidis, contain disproportionate read counts originating 
from either long or short fragments (Supplementary Fig. 5).

Impact of simulation parameters and quantification method

The FLTR approach is an alternative to read median or mean depth for profiling that 
measures the average relationships in read depth ratios between the taxa present at a 
given length. To test the FLTR approach, we first compared it to mean depth and median 
depth using the Snipen et  al. 2021 mock community samples. Across the three repli-
cates, using ratios produced relative abundance estimates similar to those produced 
using either the median or mean read depths, with Pearson correlation to the ground 
truth relative abundances ranging between 0.809 and 0.852 (Supplementary Fig. 6). Esti-
mates of relative abundance across the three replicates show consistent, taxa-specific 
patterns of over- and underabundance in several of the 20 mock community members 
(Supplementary Fig. 7). These differences may be the result of sequence-specific amplifi-
cation biases or slight deviations from the reported proportions expected from the mock 
community standard.

Data simulated from the 610 HELIUS gut microbial taxa were used to assess differ-
ences in profiling performance for the new FLTR approach versus previously published 
methods under varying library preparation conditions.  Across all simulated HELIUS 
datasets, FLTR estimates of relative abundance outperformed the mean and median 
read depth in every instance (Supplementary Table 2). In some extreme cases, relying on 
the mean and median depths fall far from the target relative abundances (Fig. 6). Reads 
simulated from the HELIUS data captured several general trends not captured with the 
mock community analyses. Most notably, we see a strong interaction between the char-
acteristics of restriction enzymes selected and the signal of the taxa simulated. Use of 
two frequent restriction enzymes, HhaI and MseI, each with 4  bp recognition motifs, 
required 100 million reads in order to detect > 90% of the input taxa. Interestingly, the 

Fig. 6 Comparisons of ground truth relative abundance (black) vs. results obtained using taxonomic ratio 
approach (green), mean depth (blue), and median depth (red) for 567 taxa returned using HELIUS simulated 
reads digested with HhaI and AgeI using 1 ×  108 total reads
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use of two infrequent restriction enzymes, EcoRI and AgeI, was able to identify a higher 
percentage of taxa at lower sequencing efforts relative to the other treatments consid-
ered (Fig. 7). At 10 million reads, the combination of EcoRI and MseI captured 96.1% of 
taxa. The majority of simulated datasets performed moderately well at 10 million reads, 
and this was used as the basis for additional simulations. Lowering the mean fragment 
size for the EcoRI/MseI simulations by 100 bp reduced the number of identifiable taxa to 
89%, and an increase by 100 bp marginally improved detection to 96.7%. Simulating the 
isolength, BcgI fragmentation of the HELIUS data returned only 56.1% of the 610 taxa, 
compared with the 66.7% of taxa identified by HhaI/MseI at the same sequencing effort 
(Supplementary Fig. 8). Across all simulations at 10 million reads, between 16 and 20% 
of reads were discarded per simulation due to the multi-mapping criterion described in 
the methods.

In order to compare the profiling performance of RMS reads when mapping to a 
known set of reference genomes and a fully inclusive database, 691 taxa based on the 
Liu et  al. dataset were simulated using even abundance. Using even relative abun-
dance allows qualitative assessment of profiling quantification efforts independent 
from taxonomic assignment, which expectedly contain naming and identification 
discrepancies between the input reference genome naming and the resulting assign-
ments. Unlike the HELIUS results, aligning these reads to the known set of references 
was able to uniquely identify every input genome (Supplementary Fig. 9). The same 
simulated reads were then assigned to the species level of the ‘PlusPFP’ Kraken2 data-
base using Bracken, which includes the target genomes and an additional 28,763 non-
target genomes at the species level or lower. The resulting number of taxonomic hits 
was inflated from 691 to 1534 total taxa. To explore the basis of these false positive 
taxonomic assignments and potential methods of reduction, the reference genomes 
from these preliminary hits were then used for BWA MEM alignment and frag-
ment recreation in place of the curated, known reference approach described above. 

Fig. 7 The relationship between the input simulated reads target and the percent of taxa identified across 4 
combinations of restriction enzyme double digests. Of the expected 610 unique taxa, many are not captured 
at lower levels of coverage. Combination of rare cutters (EcoRI and AgeI) performed better at these lower 
levels of coverage
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Upon selecting reads whose source fragments aligned to the expected cut positions 
and removing multi mapped reads, 93.8% were able to map precisely to fragments 
expected in 749 of the 1,534 taxa from the Kraken2/Bracken profile, greatly reduc-
ing the false positives. Visual inspection of the recreated fragment length distribution 
captured the expected profile (Supplementary Fig. 10). Applying the FLTR approach 
to these reads yielded broadly even estimates of relative abundance matching the 
expected community composition. Some of the estimates have much lower than even 
representation, but comparatively these results further support the fallibility of using 
mean and median read depths to estimate abundances using RMS (Fig. 8).

Discussion
Simulation is a meaningful way to measure the behavior of bioinformatics 
approaches, but its utility hinges on its ability to faithfully capture features found in 
real sequencing data. The applications of short reads are highly variable. Often the 
impacts of library prep are overlooked in the production of bioinformatics tools, and 
more tools need to be considerate of these possible nuances. Readsynth simulations 
of RMS mock communities produced realistic taxonomic distributions of genomic 
fragments and the output sequence profiles corresponded closely to those found in 
the limited RMS mock community sequences that exist. Each taxon present in the 
simulated RMS mock community produces a unique digest profile at varying relative 
abundance, and readsynth simulations faithfully captured these influential patterns 
in read depth across all combined loci in the metagenome. These simulations also 
demonstrate the influence that library preparation can have on profiling efforts. The 
fragment origin and read depth were sensitive to even minor differences in simulated 
library parameters, particularly size selection and enzyme efficiency.

Fig. 8 Comparisons of ground truth vs. results obtained using taxonomic ratio approach, mean depth, 
and median depths by mapping simulated reads naively to a fully inclusive, pre-made Kraken2 database 
(‘PlusPFP’) before fragment recreation. A total of 749 taxa were returned using this approach. Reads from 691 
taxa were simulated based on the metagenomic taxa from Liu et al. [2] sequence SRR5298272 using even 
representation and 1/749 was used as ground truth to reflect the assumption of equal abundance. In silico 
reference genomes were digested with NlaIII and HpyCH4IV producing ~ 3.3 ×  106 total reads
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Restriction enzyme digests of metagenomic communities produce irregular fragment 
length distributions that cannot be readily modeled assuming features of an underly-
ing distribution. Therefore, calculating relative proportions in the context of a mixture 
of individuals prepared this way is a challenge that has not been properly addressed to 
account for the influences of library preparation. The FLTR methodology proposed here 
may benefit efforts in metagenomic quantification when fragment or target length dif-
fers between organisms. It may also have useful applications outside of metagenomics 
where fragment size bias affects abundance estimates using read depth, such as genotyp-
ing approaches using reduced representation sequencing. We found that using the FLTR 
approach appears to be a more stable metric than either mean or median depth, often 
because RMS fragments are not unimodally distributed within an individual genome. 
Removal of multi-mapped reads may compound this effect by leaving only a small num-
ber of reads representing a genome, and these reads may exist in regions of the frag-
ment length distribution that are influenced by size-selection and PCR length biases. For 
RMS approaches to overcome the confounding influence of variable fragment lengths, it 
is a necessary prerequisite to first recreate fragments in order to know fragment lengths. 
Fortunately, if a reference genome assembly is reliable enough to produce a strong hit to 
RMS reads, it should be able to provide a framework for simulating the expected frag-
ments so long as the cut sites are preserved. Conversely, reads that remain unassigned 
or ambiguous cannot be interpreted as proportional due to the uneven contribution of 
community members, the removal of which may result in inflated estimates of relative 
abundance. It may be possible to retain multi-mapped reads using estimated abundances 
of uniquely aligned kmers, such as the KrakenUniq approach to assignment. Such 
approaches have not been tested in this study.

Simulated assessments of RMS’s capability to capture rare taxa suggest that it may 
be possible but is highly dependent on the library preparation methods. Given a finite 
set of sequence reads, the restriction enzymes selected and size sampling protocols will 
determine which taxa produce enough signal to be detected. Fragmenting a set of highly 
diverse genomes with a frequent cutting enzyme may produce hundreds of thousands 
or even millions of potential fragments, but when these reads are distributed between 
taxa whose relative abundances differ by orders of magnitude, the signal for rare taxa 
may be lost. It is likely that enzyme digests that produce shorter fragments will create 
more multi-mapping collisions, as the shorter read lengths reduce mapping confidence. 
Here we found that digests using HhaI/MseI or the BcgI isolength enzyme produced 
the greatest number of potential fragments, but based on the sensitivity of the profil-
ing approach employed, few were actually informative because the short fragments 
they produce often lack resolution against a highly inclusive database. This mapping-
based phenomenon may also explain the success of infrequent cutters, which captured 
a greater percent of the taxa present using a fraction of the overall fragments as the fre-
quent cutters. Increasing sequencing effort may allow for greater resolution when many 
fragments are produced; however, using upwards of 100 million reads per sample to cap-
ture rare taxa may reduce the cost benefits of RRS. Therefore, it is recommended to con-
sider each community’s complexity when considering the necessary read coverage, as 
has been similarly proposed for WGS profiling [23].
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When two closely related taxa exist within a community, simulations indicate that 
it may become difficult to estimate the relative abundance of each using the RMS 
approach. This is because most fragments originating from both organisms will be iden-
tical and only a small fraction of loci will be uniquely informative to a taxon. In instances 
when only a small number of fragments may be used for quantification, abundance esti-
mates using read depths may become highly sensitive to per-fragment biases originat-
ing from size-selection or PCR. The development of ddRADseq protocols for GBS were 
based around comparing conserved regions of the genome between closely related spe-
cies. With RMS, conservation between these fragments may be counterproductive when 
trying to parse the individual members of a complex community. The taxonomic ratio 
methodology described here does not rely on normalization, but it is also not designed 
to handle redundancies in multi-mapping fragments, as evidenced by the set of uniden-
tified taxa in the simulated HELIUS community. Eliminating fragments based on simi-
larity may ultimately eliminate all useful, identifying markers if multiple, nearly identical 
strains are present. Retaining these fragments requires a means of identifying distinct 
taxa when aligning against a fully inclusive database of potential matches, and the results 
may be highly dependent on the database as well as the behavior of the aligning tool 
used [24]. We also recommend future investigations into profiling software choice and 
handling ambiguously assigned reads.

While simulation cannot be expected to capture all the nuances of real sequenc-
ing data, it can help find the edge cases where existing tools might fail to perform as 
intended. Using a set of largely pre-existing bioinformatics tools, our assessments here 
of simulated RMS data may be successful in some instances and very underpowered in 
others. While RMS offers promising applications, profiling benchmarks have not been 
widely tested on mixed samples including viral, protist, or non-fungal eukaryotic mem-
bers and instead focus largely on prokaryotic and fungal taxa. Simulation could be a use-
ful means in determining whether such mixed communities contain enzyme site biases 
preventing meaningful profiling accuracy. RMS may provide a fast and affordable profil-
ing technique for communities that are relatively simple in structure. It may also be fast 
and economical in instances where detecting rare taxa is not critical. One of the largest 
obstacles preventing community use of RMS is the lack of bioinformatic tools developed 
to handle the data it produces, and applying existing profiling tools will not work out of 
the box. Both developers and users of new tools should be cognizant of the intersection 
between sample preparation and downstream analytical tools selected.

Availability and requirements

Project name: Readsynth
Project home page: github.com/ryandkuster/readsynth
Operating system(s): Linux/MacOS, 
Programming language: Python3, C++ 
Other requirements: Python packages: numpy, pandas, and seaborn
License: Apache-2.0
Any restrictions to use by non-academics: none.
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Abbreviations
RMS  Reduced metagenomic sequencing
RRS  Reduced representation sequencing
ddRADseq  Double-digest restriction-site associated DNA sequencing
GBS  Genotyping by sequencing
PCR  Polymerase chain reaction
OTU  Operational taxonomic unit
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