Skip to main content
Figure 7 | BMC Bioinformatics

Figure 7

From: Cheminformatics methods for novel nanopore analysis of HIV DNA termini

Figure 7

a. In preliminary nanopore studies the wild-type 3' end sequence (-C-A-T-G-3') was found to be similar to (-C-A-A-A-3'), which motivated the present study of a group of DNA hairpins consisting of all adenosines on the 3' side of the molecule, except for one cytosine-adenosine step. Contrary to the differences (seemingly) indicated by nature, the calculated ΔG° of hairpin formation (using mFold) is the same for the set of molecules described, with one CA step (the CA set).b. UL, the unbound terminus state, has shortest life for CA_3, i.e., CA_3 has strongest interaction with channel (and surroundings), neighboring variants (CA_2, CA_4) share this property to a lesser extent, and molecules with GC pairs more than 1 base-pair distant group very closely, the one molecule with no extra GC also separates with its own characteristic curve. This result is consistent with the increased reactivity of CA_3 to initiate complex formation [1], with weaker variants in CA_2 and CA_4, exactly as found experimentally [1-7].

Back to article page