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Abstract

Background: Traditional strategies for selecting variables in high dimensional classification problems aim to find
sets of maximally relevant variables able to explain the target variations. If these techniques may be effective in
generalization accuracy they often do not reveal direct causes. The latter is essentially related to the fact that high
correlation (or relevance) does not imply causation. In this study, we show how to efficiently incorporate causal
information into gene selection by moving from a single-input single-output to a multiple-input multiple-output
setting.

Results: We show in synthetic case study that a better prioritization of causal variables can be obtained by
considering a relevance score which incorporates a causal term. In addition we show, in a meta-analysis study of
six publicly available breast cancer microarray datasets, that the improvement occurs also in terms of accuracy. The
biological interpretation of the results confirms the potential of a causal approach to gene selection.

Conclusions: Integrating causal information into gene selection algorithms is effective both in terms of prediction
accuracy and biological interpretation.

Background
Supervised analysis of genomic datasets (gene expression
microarray or comparative genomic hybridization array
for instance) with a large number of features and a
respectively small number of samples requires the adop-
tion of either regularization or feature selection strate-
gies [1]. The most common feature selection strategies
select or rank the variables according to a relevance
score. In ranking, for instance, the score of each variable
is the univariate association with the target returned by
a measure of relevance, like mutual information, correla-
tion, or p-value. If on one hand the ranking is widely
used for its simple implementation and its low complex-
ity, on the other hand it suffers from well-known limita-
tions. A drawback is that ranking relies on univariate
terms and as such it cannot take into consideration
higher-order interaction terms or redundancy between
features [2]. Another limitation is that ranking techni-
ques are not able to distinguish between causes and

effects. This is due to the fact that univariate correlation
(or relevance) does not imply causation [3]. This pro-
blem is not solved in multivariate feature selection
approaches since their cost function typically takes into
consideration accuracy but disregards causal aspects.
Nowadays the importance of bringing causality into play
when designing feature selection methods is more
widely acknowledged in the bioinformatics and the
machine learning communities [4,5]. This is typically
the case in microarray classification, where the goal is,
for example, to distinguish between tumor classes or
predict the effects of therapies on the basis of gene
expression profiles [6]. In these settings the number of
input variables, represented by the number of gene
probes, is huge (typically several thousands) while the
number of samples, represented by the patients’ tumors,
is very limited (a few hundreds) making the selection of
relevant genes a challenging task. Moreover the infer-
ence of causal relationships between variables plays a
major role in the context of genomic studies since more
and more biologists and medical doctors expect data
analysis to provide not only accurate prediction models
(for prognostic purposes) but also insights into the
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mechanisms associated with disease and appropriate
therapeutic targets.
It is well established that the detection of causal pat-

terns cannot be carried out in a bivariate (single-input
single-output) context and that at least a trivariate set-
ting has to be considered [7]. This is put into evidence
by the literature on graphical models where arc orienta-
tion relies on notions of conditional independence
(requiring at least three terms) [8] and by the work on
information theoretic methods for network inference
[9]. In particular this paper will focus on the notion of
feature interaction, a three-way mutual information that
differs from zero when group of attributes are comple-
mentary [10]. The role of interaction in feature selection
has already been discussed in the machine learning lit-
erature. Jakulin proposed an heuristic based on interac-
tion for selecting attributes within the naive Bayesian
classifier [11]. Meyer et al. proposed a filter algorithm
which relies on the maximization of an information the-
oretic criterion, denoted Double Input Symmetrical
Relevance (DISR), which implicitly takes into account
the interaction, or complementarity between variables,
in the choice of the features [12]. Watkinson et al. used
a notion of synergy related to feature interaction to
assign a score to a pair of genes and then measured the
degree of confidence that one of the genes regulates the
other [9]. A causal filter algorithm which computes
interaction between inputs has been recently proposed
in [5]. However it is unclear whether these techniques
are capable of recovering the set of features that are
both relevant and causal, in high-dimensional problems,
such as in microarray analysis.
The contributions of this paper can be summarized as

follows. First we introduce a new causal filter based on
the interaction information and we show how to esti-
mate this quantity in a multiple-input multiple-output
setting. Second we assess the capacity of such filter to
prioritize causal variables by using a synthetic case
study. Third we measure from an accuracy and a biolo-
gical point of view the performance of such causal filter
in a number of prognostic studies in breast cancer. We
advocate that a multiple-input multiple-output approach
is particularly relevant in clinical studies where it is
common that more than a single target variable is col-
lected. This is the case of prognostic studies of breast
cancer patients where several clinical indices, including
patients’ tumor size and histological grade, are collected
together with the survival of the patients and the gene
expressions of their tumor. It is worth to note that, in
spite of their availability, these additional phenotypes are
usually not taken into consideration since statistical stu-
dies focus on survival prediction and adopt single-out-
put methods.

This paper describes an original multiple-input multi-
ple-output score which combines a conventional rele-
vance term with a causal term. This additional term
quantifies the causal role of the features and allows the
prioritization of causal variables in the resulting ranking.
We carried out a synthetic study, where the set of causal
dependencies is known, which shows that causal vari-
ables are highly ranked once this score is adopted. We
performed a meta-analysis of six publicly available breast
cancer microarray datasets to assess the improvement of
using our causal relevance score in terms of accuracy
over the conventional ranking. The related discussion
shows also that it is possible to carry out a biological
interpretation of the role of selected variables which
allows to discriminate between potentially causal and
relevant, yet non causal, features. The source code, doc-
umentation and data are open-source and publicly avail-
able from http://mlg.ulb.ac.be/software/ and http://
compbio.dfci.harvard.edu/pubs/mimocausal/.

Methods
Mutual information and interaction
Let us consider a multiple-input multiple-output
(MIMO) classification problem characterized by n input
variables X = {xi, i = 1,..., n} and m targets Y = {yj, j =
1,..., m} where xi ∈ X is continuous and
yj ∈ Yj = {cj1, . . . , cjC} . Let us denote y1 as the primary
target and the remaining m - 1 outputs as secondary
targets. We make this distinction since, though we
assume that the goal of classification is to predict y1, we
want to take advantage of the causal information which
can be extracted by multiple targets. We begin by
reviewing some notions of information theory by con-
sidering three random (boldface) variables, notably two
inputs x1, x2 and the primary target y1. The mutual
information [13] between the continuous variables x1
and x2 is defined in terms of their probabilistic density
functions p(x1), p(x2) and p(x1, x2) as

I(x1; x2) =
∫ ∫

p(x1, x2) log
p(x1, x2)
p(x1)p(x2)

dx1dx2 = H(x1) − H(x1|x2) (1)

where H is the entropy and the convention

0 log
0
0
= 0 is adopted. This quantity measures the

amount of stochastic dependence between x1 and x2
and is also called two-way interaction [11]. Note that, if
x1 and x2 are Gaussian distributed the following relation
holds

I(x1; x2) = −1
2
log(1 − ρ2) (2)

where r is the Pearson correlation coefficient.
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Let us now consider the target y1, too. The condi-
tional mutual information I(x1; x2|y1) [13] between x1
and x2, once y1 is given, is defined by

∫∫∫
p(x1, x2, y1) log

p(x1, x2|y1)
p(x1|y1)p(x2|y1)dx1dx2dy1

The conditional mutual information is null iff x1 and
x2 are conditionally independent given y1. The change
of dependence between x1 and x2 due to the knowledge
of y1 is measured by the three-way interaction informa-
tion defined in [14] as

I(x1; x2; y1) = I(x1; y1) − I(x1; y1|x2) =
= −H(x1, x2) − H(x1; y1) − H(x2; y1) +H(x1) +H(x2) +H(y1) +H(x1, x2, y1)

(3)

This measure quantifies the amount of mutual depen-
dence that cannot be explained by bivariate interactions.
When it is different from zero, we say that x1, x2 and y1
three-interact. A non-zero interaction can be either
negative, which denotes a synergy or complementarity
between the variables, or positive, which indicates
redundancy. Because of the symmetry of the H operator
in (3), we have

I(x1; x2; y1) = I(x1; y1) − I(x1; y1|x2)
= I(x2; y1) − I(x2; y1|x1)
= I(x1; x2) − I(x1; x2|y1)

(4)

By (4) we derive

I(x1; y|x2) = I(x1; y) − I(x1; x2|y) (5)

Since the joint information of x1 and x2 to y1 can be
written as

I((x1; x2); y) = I(x2; y) + I(x1; y|x2)
it follows that by adding I(x2; y) to both sides of (5)

we obtain

I((x1; x2); y)−I(x1; y)+I(x2; y)−I(x1; x2; y) = I(x1; y)+I(x2; y)+I(x1; x2|y)−I(x1; x2) (6)

Note that the above relationships hold also when
either x1 or x2 are vectorial random variables.

Feature selection, causality and interaction
Consider a multiple-class classification problem where x
Î X ⊂ ℝn is the n-variate input and y1 ∈ Y is the pri-
mary target variable. Let A = {1,..., n} be the set of
indices of the n inputs. Let us formulate the feature
selection problem as the problem of finding the subset
X* of v > 0 variables such that

X∗ = arg max
S⊂A:|S|=v

I(XS; y1) = arg max
S⊂A:|S|=v

s(XS) (7)

where the score s(XS) of a subset XS of variables is
given by the mutual information it brings to the target.

In other words, for a given number v of variables the
optimal feature set is the one that maximizes the infor-
mation about the target. Note that this formulation of
the feature selection problem, also known as Max-
Dependency [12,15], is classifier-independent.
If we want to carry out the maximization (7), both an

estimation of I and a search strategy in the space of sub-
sets of X are required. As far as the search is concerned,
according to the Cover and Van Campenhout theorem
[16], to be assured of finding the optimal feature set of
size v, all feature subsets should be assessed. Given the
infeasibility of exhaustive approaches for large n, we will
consider here only forward selection search approaches.
Forward selection starts with an empty set of variables
and incrementally updates the solution by adding the
variable that is expected to bring the best improvement
(according to a given criterion). The hill-climbing search
selects a subset of v <n variables in v steps by exploring
only

∑v
i=0 (n − 1) configurations. For this reason the

forward approach is commonly adopted in filter
approaches for classification problems with high dimen-
sionality [17,18].
If v = 1 the optimal set returned by (7) is composed of

the most relevant variable, that is the one carrying the
highest mutual information to y. For v > 1, we need to
provide an incremental solution to (7) in order to
obtain, given a set of d variables, the (d + 1)th feature
which maximizes the increase of the dependency

x∗
d+1 = arg max

xk∈X−XS

s((XS, xk)) (8)

where (XS, xk) stands for the set of variables resulting
from the union of XS and xk. Since for large d the term
s((XS, xk)) requires the computation of multivariate
mutual information, its estimation is often prone to ill-
conditioning and large variance. This led to the adop-
tion of low variate approximations in literature, like the
univariate approximation

x∗
d+1 = arg max

xk∈X−XS

s(xk) = arg max
xk∈X−XS

I(xk, y1) (9)

which leads to a ranking of the variables according to
their mutual information with the target. More
advanced approaches rely on bivariate decompositions
[12] like

x∗
d+1 = arg max

xk∈X−XS

1
d

∑
xi∈XS

s((xi, xk)) (10)

where s((xi, xk)) quantifies the amount of information
that xi and xk contain jointly about y1.
However a feature selection procedure targeting the

Max-Dependency is not able in general to discriminate
between causal and non causal dependencies. For
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instance in a selection procedure applied to a dataset
derived from a causal process like the one in Figure 1,
the effect x4 could be more highly ranked than the
direct causes x1 and x2.
Here we propose to modify the conventional score

s(X) into a causal score sc(X) able to keep into consid-
eration the causal information returned by the adoption
of a multiple output configuration. This is made possible
by integrating in the score an interaction term which is
strictly related to the notion of causal dependency.
Interaction and causal dependency
This section aims to establish the link between informa-
tion theory and causality. Causality is at the same time
an essential and imprecise notion in scientific discovery.
In order to avoid any ambiguity, here we adopt the
formalism of causal Bayesian network which is a sound
and convenient framework for reasoning about causality
between random variables [8]. This means that all causal
dependencies between variables are expressed by a
directed acyclic graph where the existence of an
oriented edge from a node xi to a node xj means that xi
directly causes xj. In formal terms we assume that the
Causal Markov condition, the Causal Faithfulness and
the Causal Sufficiency conditions hold [4]. Several works
in literature showed that the structure of a causal graph
can, to some extent, be inferred from observational data.
The vast majority of these works rely on statistical tests
of conditional independence [19]. Here we present a
way to reason about causality which do not use inde-
pendence tests but estimate an information theory score
to prioritize potential causes.

Let us consider a triplet made of two inputs xi, xj and
one target y1. As discussed in [4] six possible configura-
tions of directed acyclic graphs involving three variables
can occur. One configuration is trivial and corresponds
to a completely unconnected graph. One configuration
corresponds to a single arrow chain (for example only xi
and xj are linked) and it is well known in literature that
for a system of two variables the causal structure is not
distinguishable. Another configuration corresponds to a
fully connected graph and in this case the lack of inde-
pendencies implies that the direction of the arrows can-
not be determined. The remaining configurations can be
illustrated and detected by studying the relationship [5]
between the sign of I(xi; xj; y1) and causal patterns of
the triplet, like the ones sketched in Figure 1.
A negative interaction I(xi; xj; y1) means that the

knowledge of the value y1 increases the amount of
dependence between xi and xj; this situation occurs in
the presence of a collider. According to the label of the
collider we can have two cases: i) the common effect
configuration (for example the pattern involving x1, x2
and y1, also known as the explaining-away effect) and ii)
the spouse configuration (the pattern involving x3, x5
and y1 in Figure 1 where x3 is the common descendant
of y1 and x5). This is a consequence of the fact that, if
we assume Causal Faithfulness, the graph structure
entails that the two parents are independent (null
mutual information) but conditionally dependent (con-
ditional mutual information bigger than zero). Note also
that both configurations are characterized by the pre-
sence of a collider.
On the contrary a positive interaction I(xi; xj; y1)

between xi and xj means that the knowledge of y1
decreases the amount of dependence. This situation
occur in two cases: i) the common cause configuration
(for example, two dependent effects x3 and x4 become
independent once the value of the common cause y1 is
known as illustrated in Figure 1) and ii) the causal
chain configuration where one of the variables (let say,
x1) is the cause and the other (let say, x4) is the effect of
y1. This is due to the fact that the graph entails the
dependence between xi and xj as well as their condi-
tional independence (null conditional mutual
information).
So far we have considered a single-output configura-

tion. However causal patterns can be better identified if
we consider a multiple-output configuration, for
instance the two output configuration sketched in Figure
2. If y1 and y2 are two outputs representing different
observations of the same phenomenon (for example a
disease) we expect that the causal configurations con-
cerning the first output appear also for the second one.
This is a reasonable assumption in breast cancer clinical
studies where the measured phenotypes (size and

Figure 1 Single-output case with different causal patterns: (i)
common effect or explaining away effect configuration
involving x1, x2 and y1; (ii) spouse configuration involving x5
and y1; (iii) common cause configuration involving y1, x3, x4;
and (iv) causal chain configuration involving x1, y1, x4.

Bontempi et al. BMC Bioinformatics 2011, 12:458
http://www.biomedcentral.com/1471-2105/12/458

Page 4 of 13



histological grade of the tumor for instance) can be con-
sidered as different manifestations of the state of the
tumor.
Let us consider for instance the inputs x1 and x2 and

the two targets y1 and y2: the common effect configura-
tions between x1 and x2 and y1 holds also for the triplet
x1 and x2 and y2. The same happens for the common
cause pattern involving both the triplet x3, x4, y1 and x3,
x4, y2. The presence of multiple outputs can therefore
make more robust the identification of a causal pattern,
especially in data configurations characterized by a very
large number of variables.
In the following we will take advantage of these con-

siderations to design a causal filter able to extract from
observed data causal dependencies between variables.
The MIMO causal filter
The link between causality and interaction discussed in
the previous section suggests that, if we want to detect
causality without estimating large variate dependencies,
we may search for patterns like the one sketched in Fig-
ure 3. This dependency pattern is characterized by two
causal inputs and two outputs and can be detected
when the following two conditions are satisfied:

1 the interaction I(x1; x2; y1) is negative
2 the interaction I(x1; x2; y2) is negative

In what follows we implement this idea into a MIMO
causal filter where input variables belonging to causal
patterns like the one in Figure 3 are prioritized.
For the pair of inputs x1 and x2 and the pair of out-

puts y1 and y2, we define a structural score

C(x1, x2) = −1
2
(I(x1; x2; y1) + I(x1; x2; y2)) (11)

which is composed of two multiple-input interaction
terms. The magnitude of this score depends on whether
x1 and x2 jointly play a joint causal role on y1 and y2, or
in other words, the pattern in Figure 3 is encountered.
This means that the higher the term C(x1, x2), the
higher is the evidence that the pair x1, x2 be a cause of
y1 ad y2. This score plays a similar role to the score that
is maximized in structural identification of Bayesian net-
works [20]. If in that case the score measures the likeli-
hood of the data for a given graph structure, here the
quantity C(x1, x2) measures the likelihood of the data
for a structural pattern where the pair x1, x2 has a cau-
sal role.
In the case of bivariate output (m = 2) we propose

then a causal version sc of the univariate score s which
accounts both for the relevance and the causal role of a
pair of input variables x1 and x2

sc((x1, x2)) = I(x1; y1) + I(x2; y1) + λC(x1, x2) (12)

where l > 0 stands for the degree of causality
imposed to the selection. If we adopt the filter approxi-
mation (10) the incremental formula takes the form

x∗
d+1 = arg max

xk∈X−XS

1
d

∑
xi∈XS

sc((xi; xk)) =

= arg max
xk∈X−XS

⎡
⎣I(xk; y1) +

λ

d

∑
xi∈XS

C(xi; xk)

⎤
⎦ =

= arg max
xk∈X−XS

⎡
⎣I(xk; y1) − λ

2d

∑
xi∈XS

(I(xi; xk; y1) + I(xi; xk; y2))

⎤
⎦

(13)

In other terms this formulation suggests to add at the
(d + 1)th step, among all the remaining variables, the
one which has the better combination of relevance and
causality, where the causal term is obtained by averaging
over the selected variables and the considered outputs.

x1

y1 x6

x7x4
x3

x5 y2

x2

Figure 2 Two-output case with different causal patterns: (i)
common effect configuration involving x3, y1 and y2; (ii) spouse
configuration involving y2 and x6; (iii) common cause
configuration involving x1, y1 and y2; and (iv) causal chain
configuration involving x1, y2 and x7.

x1 x2

y1 y2

Figure 3 Two-inputs two-outputs causal pattern.
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Note that in the case of m > 2 targets the structural
score (11) is obtained by averaging the interaction terms
over the m variables.
Similarly to what is done in regularization approaches

[21] where specific configurations (typically those with
higher complexity) are penalized by adding a complexity
term to the one measuring the error, the causality para-
meter l in (13) is expected to penalize input variables
with no causal role (positive interaction). Note that for
l = 0 the selection rule (13) boils down to the rule (9).
The following section will study the impact of the caus-
ality term on the accuracy and the stability of a filter
algorithm implementing the rule (13).

Results
In this section we perform two experiments to assess
the role of the causation term in the feature selection
process. The first one is based on a number of synthetic
datasets generated by simulating a causal Bayesian net-
work while the second relies on public microarray breast
cancer datasets to assess the approach in a real data
setting.

Synthetic data
This experiment focuses on the prioritization of causes
in a set of classification tasks defined on the basis of
simulated data generated by the causal structure
depicted in Figure 4. Note that this causal structure
aims to represent in a very simplified manner a stochas-
tic dependency characterized by a number of indirect
(nodes 1-3) and direct causes (nodes 4-8), a latent non
measurable variable (node 9), one observable primary
target (node 10), two secondary targets (nodes 11-12), a
set of additional effects (nodes 13-29) and a number of
independent and irrelevant variables (nodes 30-40). In
order to set up an analogy with the real data experi-
ments of the following subsection, we could make the
assumption that the latent variable represents the cancer
progression, the three targets denote a set of observable
measures depending on the cancer state (patients’ prog-
nosis, size and histological grade of the tumor for
instance), and that all other variables represent the
expression of genes whose activity could play a causal
role, be determined as an effect of the disease or be
completely irrelevant. It is worth to note that also in the
presence of a hidden variable the interaction between
marginally independent causes given an effect is nega-
tive. This is due to the fact that conditioning on the hid-
den variable or on one of his children is equivalent in
terms of d-separation between the variables [8] and con-
sequently is equivalent in terms of the sign of the inter-
action. We simulate a number of multivariate datasets
from the causal structure in Figure 4 and for each of
them we rank the inputs of the MIMO classification

problem by using the conventional ranking approach
based on mutual information (Equation (9)) and our
novel approach based on causality (Equation (13)). The
stochastic dependency between parents and descendants
of the network is modeled by a linear regression where
the parameters are uniformly sampled in [-2, 2] and the
noise distribution is Gaussian with zero mean and stan-
dard deviation s. We carry out a series of experiments,
each characterized by 150 datasets and an increasing
noise standard deviation ranging between 0.01 and 0.4.
All the variables are continuous apart from the variables
10, 11, and 12, which correspond to the targets y1, y2,
and y3 of the classification task and are discretized to
two binary values. Note that all measures are centered
and scaled in order to have a zero mean and unit stan-
dard deviation; this allows for a better understanding of
the impact of the noise amplitude on the ranking.
The quality of our causal prioritization strategy is

assessed by measuring the average ranking of the direct
causes (nodes 4-8) and the percentage of time that the
direct causes are ranked among the first 5 variables.
These two measures (together with a 90% confidence
interval) for different values of l are shown in Figure 5
and 6 respectively. These plots show that by increasing
the value of l, the average ranking position of direct
causes decreases (direct causes are better prioritized)
and that the percentage of correct selection increases
(among the first ranked variables we find the direct
causes with higher probability). The improvement
occurs in a consistent manner for different values of the
noise standard deviation though the detection of causal
terms become less accurate as the noise increases. Note
also that the very bad performance of the ranking (l =
0) strategy (0% rate of correct selection) derives from
the very large number of effects which tend to be
ranked before the real causes.

Real expression data
The real data experiment consists of 6 public microarray
datasets derived from breast cancer clinical studies
(Table 1) in order to compare the generalization accu-
racy of the selection returned by the conventional rank-
ing approach based on mutual information (Equation
(9)) with the accuracy of the selection returned by our
novel approach based on causality (Equation (13)).
All the microarray studies analyzed hereafter are char-

acterized by the collection of gene expression data (the
inputs X representing n = 13,091 unique genes), the sur-
vival data (the primary target y1) and 2 additional clini-
cal (secondary) variables about the state of the tumor,
namely the histological grade and the tumor size. These
clinical variables are well known by clinicians to be
highly relevant for prognosis since large tumors of high
grade are usually aggressive and lead to poor prognosis.
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Each experiment was conducted in a meta-analytical
[22] and cross-validation [23] framework, that is the set
of variables are selected by relying on the samples of
several datasets and the validation is performed on a set
of samples not used for the selection. In order to adopt
a classification framework, the survival of the patients
was transformed in a binary class such as low or high
risk of the patients given their clinical outcome at five
years as in [24]. We conducted two sets of meta-analysis
validation experiments to compare the conventional
ranking approach (l = 0 case) and our causal version
for different values of l:

• Holdout: we carried out 100 training-and-test repe-
titions where for each repetition the training set is
composed of half of the samples of each dataset and
the test is composed of the remaining ones.
• Leave-one-dataset-out where for each dataset the
features used for classification are selected without
considering the patients of the dataset itself. Once
the selection is over, 100 holdout repetitions are
used to assess the generalization power of the
selected set of features.

All the mutual information terms are computed by
using the Gaussian approximation (2). This allows the
meta-analysis integration at the correlation level by
means of the weighted estimation approach proposed by
[22]. All the experiments were repeated for three sizes
of the gene signature (number of selected features): v =
20, 50, 100.
The quality of the selection is represented by the

accuracy of a Naive Bayes classifier measured by four
different criteria: the Area Under the ROC curve (AUC),
the Root Mean Squared Error (RMSE), the SAR
(Squared error, Accuracy, and ROC score introduced by
[25]) and the precision-recall F score measure [26].
Table 2 reports for the holdout experiment the value of

the four performance criteria for different values of v
and l. Table 3 refers to the leave-one-dataset-out
experiments for v = 20, v = 50, and v = 100, respec-
tively. Note that the W-L (Win-Loss) line reports the
number of datasets for which the causal filter is signifi-
cantly more (W) or less (L) accurate than the ranking
filter according both to the McNemar test [27] (p-value
< 0.05 adjusted for multiple testing by Holm’s method
[28]) and the Wilcoxon paired test on squared errors
(p-value < 0.05 adjusted for multiple testing by Holm’s
method).

Discussion
In the previous section we reported the accuracy results
of the traditional ranking approach and our novel
method based on a causal relevance score. Here we dis-
cuss the added value of our causal approach both from
a quantitative and qualitative perspective.
The performance measured in cross-validation sug-

gests that the incorporation of a causal term leads to a
significant improvement of classification accuracy. This
improvement is observed for different validation config-
urations and different sizes of the prognostic gene signa-
ture. From these results we can conclude that (i) causal
feature selection is interesting also for a prediction per-
spective and (ii) relevant (prognostic) information is
contained into secondary output variables (in our case
tumor size and histological grade). Although the abso-
lute improvement is only moderate (3% to 6% depend-
ing on the validation configurations and performance
estimates), the use of our causal ranking strategy in
more sophisticated modeling approach for prognosis,
such as in [29], may help develop more clinically rele-
vant prognostic classifiers in breast cancer.
The other advantage of our approach is that the intro-

duction of a causality term leads to an interpretation of
the causal role of the selected genes. We illustrate this
characteristic in Figure 7 by comparing, through Gene
Ontological (GO) terms, gene rankings with increasing
degree of causality using a pre-ranked gene set enrich-
ment analysis (GSEA) [30]. By quantifying how the cau-
sal rank of genes diverges from the conventional one (l
= 0) with respect to l we can identify the gene sets that
are potential causes or effects of breast cancer.
Genes that remains among the top ranked ones for

increasing l can be considered as relevant (they contain
predictive information about survival) and causal. Genes
whose rank increases for increasing l are putative
causes: they have less relevance than other genes (for
example, those being direct effects) but they are poten-
tially causal. These genes would have been missed by
conventional ranking, where they would appear as false
negatives if we interpret the outcome of conventional
ranking in causal terms. Genes whose rank decreases for

Table 1 Affymetrix microarray datasets and related
clinical study where the gene expression have been
originally published

Dataset Patients Reference

UPP 251 (110) [52]

STK 159 [53]

VDX 344 [54,55]

UNT 137 (92) [56]

MAINZ 200 [57]

TRANSBIG 198 [58]

Duplicated patients between studies have been removed in two studies, UPP
and UNT; the remaining unique patients are reported in brackets. All the
datasets have been generated from Affymetrix technology and normalized
using fRMA [51]. We consider for analysis the 13,091 unique genes common
in all datasets.
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increasing l are putative effects in the sense that they
are relevant but probably not causal. This set of genes
could be erroneously considered as causal, and represent
false positives if we interpret the outcome of conven-
tional ranking in causal terms.

Since genes are not acting in isolation but rather in
pathways, we analyzed the gene rankings in terms of
gene set enrichment. As described in [30], the normal-
ized enrichment score (NES) computed in GSEA enables
quantification of the strength of association of a gene set

Table 3 Leave-one-dataset-out: accuracy criteria (to be maximized) for different numbers v of variables and different
values of l

v = 20 l = 0 l = 0.2 l = 0.4 l = 0.6 l = 0.8 l = 0.9 l = 1 l = 2

AUC 0.678 0.674 0.678 0.680 0.682 0.682 0.680 0.669

1-RMSE 0.447 0.448 0.467 0.469 0.482 0.528 0.544 0.556

SAR 0.553 0.552 0.560 0.561 0.566 0.582 0.586 0.586

F 0.280 0.275 0.275 0.281 0.279 0.283 0.287 0.276

W-L 1-1 5-1 2-0 4-0 5-0 4-0 4-0

v = 50 l = 0. l = 0.2 l = 0.4 l = 0.6 l = 0.8 l = 0.9 l = 1 l = 2

AUC 0.681 0.687 0.692 0.693 0.698 0.700 0.700 0.693

1-RMSE 0.428 0.438 0.453 0.457 0.464 0.473 0.490 0.516

SAR 0.542 0.551 0.559 0.561 0.565 0.569 0.576 0.582

F 0.284 0.284 0.281 0.281 0.285 0.291 0.298 0.303

W-L 3-0 4-0 5-1 3-0 5-0 4-0 6-0

v = 100 l = 0 l = 0.2 l = 0.4 l = 0.6 l = 0.8 l = 0.9 l = 1 l = 2

AUC 0.687 0.694 0.704 0.708 0.711 0.706 0.708 0.676

1-RMSE 0.430 0.436 0.449 0.457 0.463 0.463 0.476 0.477

SAR 0.537 0.545 0.556 0.562 0.566 0.565 0.571 0.561

F 0.290 0.292 0.294 0.296 0.299 0.294 0.304 0.288

W-L 1-0 4-0 6-0 4-0 4-0 5-0 5-1

AUC = Area Under the Curve; 1-RMSE = one minus Root Mean Squared Error; SAR = Squared error, Accuracy, and ROC; F = precision-recall; W-L = Win -Loss
reporting the number of datasets for which the causal filter is significantly more (W) or less (L) accurate than the conventional ranking filter according both to
the McNemar test (p-value < 0.05 adjusted for multiple testing by Holm’s method) and the Wilcoxon paired test on squared errors (p-value < 0.05 adjusted for
multiple testing by Holm’s method).

Table 2 Holdout: accuracy criteria (to be maximized) for different numbers v of variables and different values of l
v = 20 l = 0 l = 0.2 l = 0.4 l = 0.6 l = 0.8 l = 0.9 l = 1 l = 2

AUC 0.688 0.688 0.694 0.699 0.703 0.704 0.705 0.707

1-RMSE 0.460 0.466 0.481 0.493 0.504 0.510 0.515 0.542

SAR 0.559 0.561 0.569 0.575 0.580 0.583 0.585 0.595

F 0.255 0.254 0.260 0.262 0.265 0.265 0.266 0.274

W-L 1-0 3-0 5-0 6-0 5-0 5-0 5-0

v = 50 l = 0 l = 0.2 l = 0.4 l = 0.6 l = 0.8 l = 0.9 l = 1 l = 2

AUC 0.693 0.698 0.702 0.706 0.709 0.710 0.711 0.715

1-RMSE 0.451 0.458 0.465 0.471 0.477 0.479 0.482 0.503

SAR 0.552 0.556 0.562 0.567 0.571 0.572 0.574 0.583

F 0.263 0.265 0.268 0.270 0.272 0.271 0.273 0.277

W-L 2-0 3-0 3-0 2-0 2-0 3-0 4-0

v = 100 l = 0 l = 0.2 l = 0.4 l = 0.6 l = 0.8 l = 0.9 l = 1 l = 2

AUC 0.699 0.704 0.708 0.711 0.714 0.715 0.715 0.716

1-RMSE 0.454 0.457 0.459 0.463 0.467 0.470 0.472 0.487

SAR 0.545 0.549 0.553 0.557 0.561 0.563 0.564 0.573

F 0.272 0.271 0.272 0.274 0.274 0.274 0.275 0.284

W-L 1-0 1-0 1-0 2-0 3-0 4-1 4-1

AUC = Area Under the Curve; 1-RMSE = one minus Root Mean Squared Error; SAR = Squared error, Accuracy, and ROC; F = precision-recall; W-L = Win -Loss
reporting the number of datasets for which the causal filter is significantly more (W) or less (L) accurate than the conventional ranking filter according both to
the McNemar test (p-value < 0.05 adjusted for multiple testing by Holm’s method) and the Wilcoxon paired test on squared errors (p-value < 0.05 adjusted for
multiple testing by Holm’s method).
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(GO term) with a phenotye of interest, here poor or
good prognosis (survival). In more details, given a list of
genes L ranked by their prognostic relevance and an a
priori defined set of genes S (for example genes sharing
the same GO category), the goal of GSEA is to deter-
mine whether the members of S are randomly distribu-
ted throughout L or primarily found at the top or
bottom; gene sets associated with the prognosis pheno-
type tend to show the latter distribution. NES reflects
the degree to which a gene set S is overrepresented at
the extremes (top or bottom) of the entire ranked list L.
The score is calculated by walking down the list L,
increasing a running-sum statistic when a gene in S is
encountered and decreasing it when genes not in S are
encountered. The magnitude of the increment depends
on the statistic used to rank the genes in L. In our study
the statistic of a gene is simply its rank (the most rele-
vant genes have the largest ranks) and its sign depends
on the association of its expression with survival: posi-
tive sign if over-expression is associated with poor survi-
val and inversely. The score is the maximum deviation
from zero encountered in the “walk"; it corresponds to a
weighted Kolmogorov-Smirnov-like statistic [30,31].
Finally the score is normalized for each gene set to
account for the size of the gene set, yielding a NES.
We computed NES for multiple genome-wide rank-

ings generated with increasing values of l, and displayed
in Figure 7 the score of the 3 most enriched GO terms
which are identified as being potentially (A) both causes
and effects, (B) causes, and (C) effects of breast tumori-
genesis (GSEA results for all the GO terms are provided
in Additional File 1, 2 and 3). The first group of GO

terms that show similar enrichment scores indepen-
dently of their level of causality are implicated in cell
movement and division, cellular respiration and regula-
tion of cell cycle (Figure 7A). The first GO term
involves genes encoding for the Rho family of GTPases
proteins that are among key regulators of actin and
microtubule cytoskeleton [32] and are often over-
expressed in human breast cancers [33]. Bromberg et al.
showed that, when affected by RNF5, this family of pro-
teins may cause dysregulation of cell proliferation to
promote tumor progression [34]. The second GO term
represents the co-enzyme metabolic process which
includes proteins showed to be early indicators of breast
cancer [35]; perturbation of these co-enzymes might
cause cancers by compromising the structure of impor-
tant enzyme complexes implicated in mitochondrial
functions [35]. Genes involved in the third GO term
“regulation cyclin-dependent protein kinase activity” are
key players in cell cycle regulation and inhibition of
such kinases proved to block proliferation of human
breast cancer cells [36]. Moreover, Moore et al. recently
highlighted the role of cyclin-dependent kinases as pro-
gesterone activators that could give raise to tumors and
sustain their progression in breast cancer [37].
Figure 7B displays the GO terms that are increasingly

enriched with their degree of causality, involving genes
that are putative causes of the tumorigenesis affecting
patients’ survival; these genes might have been missed
by the conventional ranking approach (l = 0). Counter-
intuitively, the three GO terms in this category are
related to the immune system what is sought to be
more an effect of the tumor growth as lymphocytes

Normalized Enrichment Score

−2 −1 0 1 2

Normalized Enrichment Score

−2 −1 0 1 2

Normalized Enrichment Score

−2 −1 0 1 2

Microtubule cytoskeleton 
organization and biogenesis

Coenzyme metabolic process

Regulation of cyclin dependent
protein kinase activity

A B C

Cellular defense 
response

Inflammatory response

Defense response

M phase of mitotic cycle

DNA replicaton

NES NES NES

M phase

0 0.5 1 2
λ

Figure 7 Most enriched GO terms with respect to l according to a pre-ranked gene set enrichment analysis (GSEA): (A) GO terms
enriched in the conventional ranking and having a high degree of causality for tumorigenesis; (B) GO terms increasingly enriched
with respect to larger l, suggesting they are putative causes for tumorigenesis; (C) GO terms decreasingly enriched with respect to
larger l, suggesting they are putative effects for tumorigenesis. The normalized enrichment score (NES) depends on the genome-ranking
of the genes, which in turn depends on l. Larger the NES of a GO term, stronger the association of this gene set with survival; the sign of NES
reflects the direction of association of the GO term with survival, a positive score meaning that over-expression of the genes implies worst
survival and inversely.

Bontempi et al. BMC Bioinformatics 2011, 12:458
http://www.biomedcentral.com/1471-2105/12/458

Page 10 of 13



strike cancer cells as they proliferate. However, several
independent research groups showed that frequent
usage of aspirin significantly decrease the long-term risk
of cancer death by correcting immune system dysfunc-
tion [38,39], findings that have been confirmed in breast
cancer [40], what supports that the immune system
might have a causal role in tumorigenesis. There is
strong evidence of interplay between immune system
and tumors since solid tumors are commonly infiltrated
by immune cells; in contrast to infiltration of cells
responsible for chronic inflammation, the presence of
high numbers of lymphocytes, especially T cells, has
been reported to be an indicator of good prognosis in
many cancers [41], what concours with the sign of the
enrichment (negative enrichment; Figure 7B). We and
others have reported that gene expression signatures
representing the immune response process were asso-
ciated with a better prognosis in particular subtypes of
breast cancer [29,42,43].
The last group of GO terms are less enriched when

the degree of causality increases and the vast majority of
the corresponding genes are related to cell-cycle and
proliferation (Figure 7C). Cell-cycle and proliferation-
related genes, such as for example Ki67, have been used
for many decades to describe breast tumors: High levels
of Ki67 have been correlated with worse prognosis and
are also known to be associated with high tumor grade
and negativity of estrogen receptor status [44,45]. We
and others have shown that a quantitative measurement
of proliferation genes using mRNA gene expression
could provide an accurate assessment of prognosis of
breast cancer patients [43,46,47]. We also have shown
that only one of those genes, AURKA, which is signifi-
cantly enriched in this case in the M phase GO term,
was sufficient to recapitulate the prognostic performance
of different prognostic signatures [48]. However the
enrichment of these proliferation-related genes seems to
be a downstream effect of the breast tumorigenesis
instead of its cause.
Our approach allows to identify biological processes

that may be direct causes of cancer. These processes are
likely to be missed by conventional methods. Given the
promising performance of our approach, we plan to
integrate our method in analytical frameworks combin-
ing efficiently the available clinical data and a priori bio-
logical knowledge, potentially retrieved from biomedical
literature [49] or pathway database [50], in order to
unravel gene sets or network of genes causal of cancer
patients’ survival.

Conclusions
It is well known in statistics that correlation does not
imply causation or, in more general terms, that fea-
tures that are relevant or strongly relevant for

predicting a target are not necessarily direct causes.
Direct effects are typical examples of variables that
provide information about a target without having any
causal role. In a data-driven approach to gene selection
it is therefore more and more important to discrimi-
nate not only between relevant and non-relevant vari-
ables but also, within the subset of relevant variables,
to discriminate between direct or indirect causes and
effects. This paper proposes a computationally afford-
able strategy to infer causal patterns that take advan-
tage of multiple outputs. Experimental results in terms
of accuracy and clinical interpretation show the added
value deriving from the inclusion of a causal term into
conventional ranking.

Additional material

Additional file 1: Spreadsheet containing the normalized
enrichment scores with respect to increasing l as computed by
preranked GSEA (gsea_res_all.csv).

Additional file 2: Archive containing the output files computed by
the preranked GSEA for l Î {0.1,0.2,0.3,0.4,0.5} (GSEA_MIMO_part1.
zip).

Additional file 3: Archive containing the output files computed by
the preranked GSEA for l Î {0.6,0.7,0.8,0.9,1.0,2.0}
(GSEA_MIMO_part2.zip).
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