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Abstract

Background: A fundamental problem in modern genomics is to taxonomically or functionally classify DNA sequence
fragments derived from environmental sampling (i.e., metagenomics). Several different methods have been proposed
for doing this effectively and efficiently, and many have been implemented in software. In addition to varying their
basic algorithmic approach to classification, some methods screen sequence reads for ’barcoding genes’ like 16S
rRNA, or various types of protein-coding genes. Due to the sheer number and complexity of methods, it can be
difficult for a researcher to choose one that is well-suited for a particular analysis.

Results: We divided the very large number of programs that have been released in recent years for solving the
sequence classification problem into three main categories based on the general algorithm they use to compare a
query sequence against a database of sequences. We also evaluated the performance of the leading programs in each
category on data sets whose taxonomic and functional composition is known.

Conclusions: We found significant variability in classification accuracy, precision, and resource consumption of
sequence classification programs when used to analyze various metagenomics data sets. However, we observe some
general trends and patterns that will be useful to researchers who use sequence classification programs.

Background
A fundamental problem in modern genomics is to taxo-
nomically or functionally classify DNA sequences derived
from environmental sampling (i.e., metagenomics). Many
metagenomic studies are essentially community ecology
studies, which seek to characterize communities statically
or dynamically in terms of composition, structure, abun-
dance, demography, or succession, and sometimes with
consideration of other biotic or abiotic factors. Conse-
quently many of these characterizations, and inferences
derived from them, are sensitive to the accuracy and
precision of taxonomic assignment of the metagenomic
sequences involved. These sequences are often in the form
of unassembled reads whose average length in a sample
may vary by an order of magnitude depending on the
sequencing technology used (e.g., ∼ 100 bp to ∼ 1000
bp). To classify these sequences of unknown origin, the
basic strategy employed is to compare them to annotated
sequences that reside in public databases (e.g., GenBank

*Correspondence: adam.bazinet@umiacs.umd.edu
Laboratory of Molecular Evolution, Center for Bioinformatics and
Computational Biology, University of Maryland, College Park, MD 20874, USA

[1], Pfam [2]). On the basis of such comparisons, one
may be able to say with some certainty that a particular
sequence belongs to a specific taxon (of any taxonomic
rank from domain to species; more specific classifica-
tions are usually more desirable). Sometimes the query
sequence does not have a close relative in the database,
which is problematic for all methods.
The classification of unlabeled sequences using pre-

viously labeled sequences is supervised learning; this
approach is the focus of our evaluation. However, it is
important to mention that unsupervised learning tech-
niques exist for “binning” sequences in an environmental
sample (e.g., LikelyBin [3], CompostBin [4]), i.e., clustering
groups of similar sequences together. These techniques
are useful when one desires a high-level characteriza-
tion of their sample (e.g., classification of bacteria at the
phylum rank). Binning may also be used to improve sub-
sequent supervised classification of groups of sequences
(PhyScimm [5]).
It is important to note that some supervised learning

methods will only classify sequences that contain “marker
genes”. Marker genes are ideally present in all organisms,
and have a relatively high mutation rate that produces
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significant variation between species. The use of marker
genes to classify organisms is commonly known as DNA
barcoding. The 16S rRNA gene has been used to greatest
effect for this purpose in the microbial world (green genes
[6], RDP [7]). For animals, the mitochondrial COI gene is
popular [8], and for plants the chloroplast genes rbcL and
matK have been used [9]. Other strategies have been pro-
posed, such as the use of protein-coding genes that are
universal, occur only once per genome (as opposed to 16S
rRNA genes that can vary in copy number), and are rarely
horizontally transferred [10]. Marker gene databases and
their constitutive multiple alignments and phylogenies are
usually carefully curated, so taxonomic and functional
assignments based on marker genes are likely to show
gains in both accuracy and speed over methods that ana-
lyze input sequences less discriminately. However, if the
sequencing was not specially targeted [11], reads that con-
tainmarker genesmay only account for a small percentage
of a metagenomic sample.

General approaches to sequence classification
We have identified three main supervised learning
approaches that compare query sequences to database
sequences for the purpose of assigning a taxon label:
sequence similarity search (homology or alignment-based
methods; e.g., BLAST [12]), sequence composition meth-
ods (e.g.,Markovmodels, k-mer counts), and phylogenetic
methods (which apply an evolutionary model to the query
and database sequences and determine where the query
best “fits” in the phylogeny). Most software programs use
only one of these approaches, but some use a combination
of two approaches. (None of the programs mentioned in
this paper combine all three approaches).
Programs that primarily utilize sequence simi-

larity search include CARMA [13,14], FACS [15],
jMOTU/Taxonerator [16], MARTA [17], MEGAN [18],
MetaPhyler [19], MG-RAST [20], MTR [21], and SOrt-
ITEMS [22]. Most of these programs employ BLAST
(most commonly, BLASTX), and several incorporate
some version of the lowest-common ancestor (LCA)
algorithm first pioneered by MEGAN. After BLAST, the
second most common method aligns a query sequence
to a reference sequence represented by a profile hid-
den Markov model (pHMM); usually a Pfam domain.
Alignment-based methods display great accuracy, even
for short query sequences, but suffer from two gen-
eral shortcomings: a) since the reference databases are
very large, it can take a long time to search each query
sequence against them; and b), if the query sequence is
not represented in the database, as could often be the
case, assignment accuracy may suffer more so than when
using other methods.
Programs that primarily utilize sequence composition

models include Naive Bayes Classifier (NBC) [23,24],

PhyloPythia [25,26], PhymmBL [27], RAIphy [28], RDP
[29], Scimm [5], SPHINX [30], and TACOA [31]. Meth-
ods for building sequence models often make use of
interpolated Markov models (IMMs), naive Bayesian
classifiers, and k-means/k-nearest-neighbor algorithms.
There is some overhead to computing sequence mod-
els of various organisms, but once models are built,
query sequence classification is generally faster than
with alignment-based methods. Accuracy, however, may
still be able to be improved — this is why PhymmBL
incorporates similarity search (the “BL” is for BLAST).
As a result, PhymmBL achieves greater accuracy than
either Phymm or BLAST alone. Finally, it was widely
reported that the initial version of PhyloPythia performed
poorly for query sequences less than 1000 bp in length
[27,28]; few current next-generation sequencing (NGS)
technologies produce reads of that length. However,
composition-based methods are now perfectly capable
of classifying short query sequences. For example, NBC
obtained over 90% accuracy for 25 bp reads with 5-fold
cross-validation [23].
Programs that primarily utilize phylogenetic methods

include EPA [32], FastTree [33], and pplacer [34]. Phylo-
genetic methods attempt to “place” a query sequence on a
phylogenetic tree according to a model of evolution using
maximum likelihood (ML), Bayesian methods, or other
methods such as neighbor-joining (NJ). Some programs
compute the length of the inserted branch, which repre-
sents the amount the query sequence has evolved relative
to the rest of the tree; most programs, however, are simply
concerned with the placement (and hence classification)
of the sequence. Programs assign a specific taxon (and
hence taxonomic rank) to a “placed” sequence using dif-
ferent algorithms, but they all make use of the basic obser-
vation that an inserted branch will be divergent from an
internal node representing a species or higher rank. Since
phylogenetic methods require a multiple alignment, and
a fixed topology (either derived from the multiple align-
ment, or some other source; e.g., the NCBI taxonomy), the
first step in most phylogenetic workflows is to add a query
sequence containing a marker gene to a reference align-
ment (AMPHORA [35,36], Treephyler [37], green genes
[6]). Hence, most phylogenetic methods require the use of
marker genes. One that does not, however, is SAP [38], in
which the first step is to construct a multiple alignment
from the results of a BLAST search. Phylogenetic methods
assume that using computationally intensive evolutionary
models will produce gains in accuracy, and their inherent
use of tree-based data structures makes taxon assignment
to higher ranks as well as lower ones very straightforward.
The additional algorithmic complexity means that phylo-
genetic workflows currently require substantial comput-
ing power to analyze large metagenomic samples, how-
ever; this is true even for methods that only use marker
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genes. Large-scale analyses will gradually become more
practical as more efficient algorithms are developed, com-
putational resources become more powerful, and through
use of parallelization.

Additional considerations
One important consideration for any sequence classifica-
tion method is whether the method offers a measure of
assignment confidence. Such an uncertainty measure is
extremely useful; assignments whose confidence score is
below a certain threshold can be disregarded, for exam-
ple. Phylogenetic methods tend to provide confidence of
assignment through use of bootstrap or posterior prob-
abilities, or other techniques. Alignment-based methods
generally do not provide a confidence estimate.
Another consideration is the availability and ease of use

of the program — whether it is a command line program,
has a graphical user interface (GUI), is available as a web
service, and so on. If the program is to be downloaded
and installed, one must consider how much processing
power, memory, and disk the program will need to ana-
lyze a particular data set. Some of these needs will prohibit
local execution of the program for large data sets, perhaps
instead necessitating use of a compute cluster. If there
is a web service available for the program, one needs to
find out how much computational power is allocated to a
single user, and thus whether the service can be used in
practice to analyze entire metagenomes. A further consid-
eration is whether the program continues to be actively
developed and maintained after a paper is published and
the code is initially released. Actively maintained pro-
grams are likely to be improved as a result of feedback
from users, and may eventually become “standard” tools
used by the community.

Program capability analysis
We identified 25 programs for sequence classification
that fall into one of the three primary analysis categories
we described: sequence similarity or alignment-based (9
programs), sequence composition model-based (8 pro-
grams), and phylogenetic-based (8 programs). Our list is
not exhaustive, but we do include a broad cross section of
widely used and interesting programs in our comparison.
The attributes and capabilities of each program are

given in Table 1. For each program, we report the general
analysis method it uses, and more detailed analysis char-
acteristics, as applicable; whether the program requires
specific genes as input; and the type of interface to the pro-
gram. For a given program attribute (a column in Table 1),
it is possible for a program to have multiple values. We
defined a distance function and created a neighbor-joining
tree that clusters the programs based on their similar
attributes (Figure 1).

Program performance evaluation
When publishing theirmethod, researchers typically com-
pare their program to one or more existing programs.
Presumably they attempt to choose programs that are
most similar to their own, but we find that this is not
always the case. Perhaps the researcher is simply not aware
of all the tools in existence, or does not have the time to
evaluate them all, so they pick a couple of popular or well-
known tools. In contrast, we focused our comparisons
on a single category at a time, which we believe gener-
ates more interesting and generally useful comparisons
between conceptually similar programs.
We evaluated the performance of sequence classifica-

tion programs in two main areas:

1. assignment accuracy — we tested assignment
accuracy using data sets from the publications
associated with each program, and analyzed each
data set with as many programs from the
corresponding category as possible. Specifically, we
measured assignment sensitivity (number of correct
assignments / number of sequences in the data set),
precision (number of correct assignments / number
of assignments made), the overall fraction of reads
that were assigned, and the taxonomic rank at which
assignments were made. (In general, more specific
taxon assignments are more useful, although one
usually expects sensitivity and precision to decrease
as increasingly specific assignments are made).

2. resource requirements (processing time, RAM, and
disk requirements) — we monitored the resources
consumed by each program during the analysis of
each data set. Some programs have web services
available that we used in program evaluation, which
made it more difficult to precisely measure how
much of each resource was consumed.

Results
Within each category, we selected a subset of programs to
evaluate. Programs were selected on the basis of several
factors: whether they are actively maintained, how pop-
ular they are, how recently they were published, whether
they have been superseded by another program, and so
on. From this standpoint, we have attempted to make
the comparisons in each category as interesting and use-
ful to the current active community of researchers as
possible.

Alignment
In the alignment category, we selected five programs
to evaluate: CARMA (command line version 3.0), FACS
(1.0), MEGAN (4.61.5), MG-RAST (3.0), and MetaPhyler
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Table 1 Program attributes and characteristics

Similarity-basedMethods

Program Similarity
Method

LCA Specific Genes
Req’d

Interface

CARMA BLAST, HMM command line,
web-based

FACS other command line

jMOTU/Taxonerator BLAST, other multiple
alignment

command line

MARTA BLAST LCA-like command line

MEGAN BLAST LCA-like GUI

MetaPhyler BLAST marker genes command line

MG-RAST BLAST marker genes web-based

MTR BLAST LCA-like command line

SOrt-ITEMS BLAST LCA-like command line

Composition-basedMethods

Program Composition
Method

Machine
Learning

Confidence
Method

Specific Genes
Req’d

Interface

Naive Bayes Classifier NBC supervised other command line,
web-based

PhyloPythiaS other supervised command line,
web-based

PhymmBL IMM supervised other command line

RAIphy other semi-supervised GUI

RDP k-means/kNN,
NBC

supervised bootstrap 16S rRNA command line,
web-based

Scimm IMM semi-supervised command line

TACOA k-means/kNN supervised command line

Phylogeny-basedMethods

Program Phylogeny
Method

Confidence Method Specific Genes
Req’d

Interface

EPA ML bootstrap, other multiple
alignment

command line,
web-based

FastTree other bootstrap multiple
alignment

command line

green genes (NAST, Simrank) other 16S rRNA web-based

pplacer ML, Bayesian posterior probability, other multiple
alignment

command line

Combined Similarity and Composition-basedMethods

Program Similarity
Method

Composition
Method

Machine
Learning

Specific Genes
Req’d

Interface

SPHINX BLAST k-means/kNN supervised web-based

Combined Similarity and Phylogeny-basedMethods

Program Similarity
Method

Phylogeny
Method

Confidence
Method

Specific Genes
Req’d

Interface

AMPHORA HMM other bootstrap marker genes command line

MLTreeMap BLAST, HMM ML bootstrap, other marker genes command line,
web-based

SAP BLAST Bayesian, other posterior
probability, other

command line

Treephyler HMM other bootstrap marker genes command line
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Figure 1 Program clustering. A neighbor-joining tree that clusters the classification programs based on their similar attributes.

(1.13). Based on our experience using these programs, we
note the following:

1. FACS requires bloom filters to be built for the
reference sequences that are to be searched, which is
infeasible to do for large databases (e.g., GenBank’s
non-redundant nucleotide (nt) and protein (nr)
databases). Therefore, we were unable to analyze the
majority of data sets with FACS.

2. We ran BLASTX with default parameters against the
nr database, and used this as input to CARMA and
MEGAN. BLAST accounted for 96.40% and 99.97%
of the total runtime for these workflows, respectively
(Table 2).

3. MG-RAST has several different analysis options. We
used the non-redundant multi-source annotation
database, or M5NR, and their implementation of an
LCA algorithm for taxon assignment.

4. MG-RAST requires input sequences to contain
protein-encoding genes (PEGs), and assigns each of
these to a particular taxon. Not all query sequences
in a random shotgun sample will contain a PEG, so
MG-RAST typically classifies fewer overall sequences
than other methods. In addition, it is possible for a
single input sequence read to contain multiple PEGs.
In order to be consistent with other methods that
make classifications on a read-by-read basis, we map
the PEG assignments back the read they came from,
and make fractional read assignments to a particular
taxon as necessary. (For example, a particular read
could contain two PEGs: one PEG assigned to

phylum A, and the other PEG assigned to phylum B.
If only one of these is correct, the read would
contribute 0.5 to a tally of “correct” assignments, and
0.5 to a tally of “incorrect” assignments).

5. MetaPhyler requires input sequences to contain
certain “marker genes” (protein-coding genes that
are “universal” and occur only once per genome), an
approach pioneered by AMPHORA. Very few query
sequences in a random shotgun sample will contain
marker genes, so MetaPhyler typically classifies fewer
overall sequences than other methods; many fewer
than even MG-RAST, for example.

Four data sets were selected for analysis with each of
the alignment-based programs. Percentage of sequence
classified, sensitivity, precision, and resource consump-
tion are shown for the alignment-based programs in
Table 2. What follows is a short description of each data
set, and a summary of the results of analysis with each
program.

FACS 269 bp high complexity 454metagenomic data set
This data set, which consists of 105 sequences of average
length 269 bp, originally used by Stranneheim et al. [15],
was downloaded from the FACS web site. The sequences
are from 19 bacterial genomes, three viral genomes, and
two human chromosomes. The distribution of sequences
is as follows: 73.0% Eukaryota, 25.6% bacteria, and 1.5%
viruses.
It was reported that FACS assigned sequences to species

with 99.8% sensitivity and 100% specificity using a k-mer
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Table 2 Performance of alignment-basedprograms

Program FACS 269 bp MetaPhyler 300 bp CARMA 265 bp PhyloPythia 961 bp Mean

Percentage of sequence classified

CARMA 29.0 93.6 68.7 61.3 63.2

MEGAN 48.4 88.2 90.5 62.2 72.3

MetaPhyler 0.2 80.9 0.5 0.6 20.6

MG-RAST 27.1 29.8 80.2 70.5 51.9

Sensitivity (percentage)

CARMA 26.7 93.4 68.5 59.8 62.1

MEGAN 42.5 87.9 90.3 61.0 70.4

MetaPhyler 0.1 80.7 0.5 0.5 20.5

MG-RAST 25.0 29.7 80.1 67.2 50.5

Precision (percentage)

CARMA 92.0 99.7 99.7 97.4 97.2

MEGAN 78.1 99.7 99.8 98.1 93.9

MetaPhyler 84.0 99.7 100.0 83.8 91.9

MG-RAST 92.4 99.8 99.9 95.3 96.9

CPU Runtime (minutes)

CARMA1,2 290880 77340 74950 360107 200819

MEGAN1,2 288020 72060 72010 351060 195788

MetaPhyler3 10 20 2 28 15

MG-RAST4 60 10080 20160 12960 10815

Memory Usage (Megabytes of RAM)

CARMA 100 100 100 120 105

MEGAN 1024 1024 1024 1410 1121

MetaPhyler 5734 5734 5734 5734 5734

MG-RAST5 - - - - -

Measurements of sensitivity, precision, and resource consumption on four simulated data sets.
1analysis performed on a 2.66 GHz Intel Core i7 MacBook Pro running Mac OS X 10.7.1 with 8 GB 1067 MHz DDR3 RAM.
2BLAST v2.2.18 analysis performed using ∼200 Opteron 2425 HE (2.1GHz) cores; each node has 48G RAM.
3analysis performed on an AMD Opteron 250 (2.4 GHz) Sun Fire V40z with 32 GB RAM.
4used web service; recorded value is number of minutes to receive results, not actual CPU runtime.
5used web service; memory usage was unable to be determined.

size of 21 and a match cutoff of 35% sequence similar-
ity [15]. However, we encountered technical difficulties
using the FACS software and were unable to reproduce the
results reported in the FACS paper.
Distribution of sequence assignments produced by the

alignment-based programs is shown in Table 3.

MetaPhyler 300 bp simulatedmetagenomic data set
This data set, which consists of 73,086 sequences of length
300 bp, originally used by Liu et al. [19], was acquired from
the authors. The sequences are simulated reads from 31
phylogenetic marker genes from bacterial genomes. The
distribution of sequences into bacterial phyla is as follows:
Proteobacteria, 47.0%; Firmicutes, 21.9%; Actinobacteria,
9.7%; Bacteroidetes, 4.8%; Cyanobacteria, 3.9%; Teneri-
cutes, 2.2%; Spirochaetes, 1.9%; Chlamydiae, 1.3%; Ther-
motogae, 0.9%; Chlorobi, 0.9%.

Although a comparison of MetaPhyler, MEGAN,
CARMA, and PhymmBL is already given for this data
set [19], we decided to redo these analyses in a way that
is consistent with our standard procedures (i.e., we did
not exclude query reads from the reference database, as
Liu et al. did with 3/4 of their analyses, viz., MetaPhyler,
MEGAN, and PhymmBL). Additionally, we restricted our
analyses to the phylum rank.
Distribution of sequence assignments produced by the

alignment-based programs is shown in Table 4.

CARMA265 bp simulated 454metagenomic data set
This data set, which consists of 25,000 sequences of
average length 265 bp, originally used by Gerlach and
Stoye [14], was acquired from the WebCARMA web
site. The sequences are simulated 454 reads from 25
bacterial genomes. The distribution of sequences into
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Table 3 Results for the FACS simHCmetagenomic data set (105 sequences, 269 bp)

actual CARMA MEGAN MetaPhyler MG-RAST

percentage of sequence classified 29.0 54.4 0.2 27.1

Eukaryota 73.0 30.3 42.0 0.0 21.0

Bacteria 25.6 62.8 52.0 84.0 71.5

Viruses 1.5 0.0 0.3 0.0 0.1

Archaea 0.0 6.9 5.7 16.0 7.3

percentage of sequence misclassified 8.0 12.2 16.0 7.6

correlation coefficient 0.45 0.72 -0.09 0.26

The actual distribution of sequences compared to the distribution inferred by the alignment-based programs.

bacterial phyla is as follows: Proteobacteria, 73.0%; Firmi-
cutes, 12.9%; Cyanobacteria, 7.8%; Actinobacteria, 5.2%;
Chlamydiae, 1.0%.
Distribution of sequence assignments produced by the

alignment-based programs is shown in Table 5.

PhyloPythia 961 bp simMC data set
This data set, which consists of 124,941 sequences of aver-
age length 961 bp, originally used by Patil et al. [39], was
downloaded from the FAMES [40] web site. All classifica-
tions were performed at the genus rank.

Discussion
From the alignment-based analyses, we can make several
observations.

1. The BLAST step completely dominates the runtime
for alignment-based methods. It can use a fair
amount of disk space in the process (as much as 17
GB for the MetaPhyler data set), and can use a
considerable amount of RAM if analyzing a large
number of sequences on a single node.

2. MetaPhyler is the one exception to the
previous observation; its BLAST step and subsequent
algorithmic steps run extremely quickly, but it gener-
ally only classifies a small fraction of reads in a typical
sample. Also, Table 2 shows that MetaPhyler uses
a large amount of RAM (5.6 GB); this is in part due
to a memory leak that has been fixed in a subsequent
release (personal correspondence with the author).

3. The MG-RAST web service showed
a large variance in time required to receive results,
although there is at least a weak correlation with
data set size and analysis parameters. With a web
service, it is difficult to know what other variables
affect time to results (e.g., load on cluster queues),
and currently the MG-RAST server does not provide
an estimate of how long a given submission will take.

4. For the FACS high complexity data set, none
of the programs produced a taxonomic distribution
that was remotely close to the known distribution
(Table 3); all greatly underestimated the amount
of eukaryotic DNA. The reason for this is unclear.

Table 4 Results for the MetaPhyler simulatedmetagenomic data set (73,086 sequences, 300 bp)

actual CARMA MEGAN MetaPhyler MG-RAST

percentage of sequence classified 93.6 88.2 80.9 29.8

Proteobacteria 47.0 47.6 44.5 48.3 46.7

Firmicutes 21.9 22.2 24.0 21.8 23.1

Actinobacteria 9.7 8.7 8.8 9.1 9.3

Bacteroidetes 4.8 4.5 4.8 4.3 4.4

Cyanobacteria 3.9 3.6 3.8 3.9 3.7

Tenericutes 2.2 2.5 2.7 2.4 2.3

Spirochaetes 1.9 2.4 2.6 2.3 2.2

Chlamydiae 1.3 1.9 2.0 1.8 1.8

Thermotogae 0.9 1.2 1.2 1.1 1.2

Chlorobi 0.9 1.4 1.5 1.3 1.4

percentage of sequence misclassified 0.3 0.3 0.3 0.2

correlation coefficient ≈ 1.0 ≈ 1.0 ≈ 1.0 ≈ 1.0

The actual distribution of sequences compared to the distribution inferred by the alignment-based programs.
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Table 5 Results for the CARMA 454 simulatedmetagenomic data set (25,000 sequences, 265 bp)

actual CARMA MEGAN MetaPhyler MG-RAST

percentage of sequence classified 68.7 90.5 0.5 80.2

Proteobacteria 73.0 73.2 73.0 69.2 73.2

Firmicutes 12.9 13.2 12.8 17.3 12.9

Cyanobacteria 7.8 7.3 7.8 6.8 7.6

Actinobacteria 5.2 5.0 5.3 2.3 5.4

Chlamydiae 1.0 1.2 1.1 4.5 0.9

percentage of sequence misclassified 0.3 0.2 0.0 0.1

correlation coefficient ≈ 1.0 ≈ 1.0 ≈ 1.0 ≈ 1.0

The actual distribution of sequences compared to the distribution inferred by the alignment-based programs.

5. For the MetaPhyler 300 bp data set, all four alignment
programs recapitulated the known distribution
of bacterial phyla extremely well (Table 4).
All had near-perfect precision, and sensitivity was
greater than 80% for 3/4 of the programs (Table 2).
MG-RAST only had sensitivity of 30%, but this
was still enough assignments to accurately estimate
the taxonomic distribution (Pearson’s r ≈ 1).

6. For the CARMA 265 bp data set, CARMA, MEGAN,
and MG-RAST recapitulated the known distribution
of bacterial phyla extremely well (Table 5).
MetaPhyler was slightly worse, but still quite good
considering that it only classified 0.5% of sequences.

7. For the PhyloPythia 961 bp
data set, all programs except MetaPhyler displayed
comparable sensitivity and precision (Table 2).

8. Methods that use marker genes (MetaPhyler
and MG-RAST) are generally less sensitive than
methods that do not use marker genes (CARMA and
MEGAN), but typically run faster (Table 2). All meth-
ods displayed comparable overall precision; CARMA
and MG-RAST were the most precise (Table 2).

Composition
In the composition category, we selected four programs
to evaluate: Naive Bayes Classifier (version 1.1), PhyloPy-
thiaS (1.1), PhymmBL (3.2), and RAIphy (1.0.0). Based
on our experience using these programs, we note the
following:

1. All four programs need to be “trained” (classifiers
built on training data) before they can be used to
classify unknown query sequences. Training times
for all four programs can be found in Table 6.

2. NBC, PhyloPythiaS, and PhymmBL were all trained
on the latest microbial genomes in the RefSeq [41]
database.

3. The database we used for RAIphy is the one
currently available on the RAIphy web site, which

was built from RefSeq in 2010. We built our own
database using the latest version of RefSeq and
retrained RAIphy with this updated database, but
found that classification accuracy was drastically
lower. We have been in contact with the developers
about the problem, but so far no satisfactory
explanation has been found.

4. Technical limitations having to do with memory
usage or program bugs required us to break up our
FASTA input files into multiple, smaller input files to
use with PhyloPythiaS and PhymmBL.

5. NBC produces raw output as hundreds of large
matrices, in which the rows represent genomes and
the columns represent sequence reads. The value in a
particular cell is the score given by the algorithm for
assigning a particular sequence read to a particular
genome. Therefore, it was necessary to parse this
output to find the largest score in each column in
order to assign each read to a particular taxon.

Three data sets were selected for analysis with each of
the composition-based programs. Percentage of sequence
classified, sensitivity, precision, and resource consump-
tion are shown for the composition-based programs in
Table 6. What follows is a short description of each data
set, and a summary of the results of analysis with each
program.

PhyloPythia 961 bp simMC data set
This data set, which consists of 124,941 sequences of aver-
age length 961 bp, originally used by Patil et al. [39], was
downloaded from the FAMES [40] web site. All classifica-
tions were performed at the genus rank.

PhymmBL 243 bp RefSeq data set
This data set, which consists of 80,215 sequences of aver-
age length 243 bp, originally used by Brady and Salzberg
[27], was downloaded from the PhymmBL web site. All
classifications were performed at the genus rank.
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Table 6 Performance of composition-based programs

Program PhyloPythia 961 bp PhymmBL 243 bp RAIphy 238 bp Mean Training

Percentage of sequence classified

NBC 100 100 100 100

PhyloPythiaS 3.5 3.1 3.3 3.3

PhymmBL 100 99.7 100 99.9

RAIphy 100 100 100 100

Sensitivity (percentage)

NBC 95.4 97.5 99.4 97.4

PhyloPythiaS 3.1 1.8 2.2 2.4

PhymmBL 48.4 96.8 81.9 75.7

RAIphy 54.8 31.8 48.0 44.9

Precision (percentage)

NBC 95.4 97.5 99.4 97.4

PhyloPythiaS 88.1 58.5 66.1 70.9

PhymmBL 48.4 97.0 81.9 75.8

RAIphy 54.8 31.8 48.0 44.9

CPU Runtime (minutes)

NBC1 13496 3595 17573 11555 1217

PhyloPythiaS2 297 180 506 328 4320

PhymmBL1 15600 1035 23508 13381 2880

RAIphy3 105 25 122 84 30

Memory Usage (Megabytes of RAM)

NBC 200 200 200 200

PhyloPythiaS4 100 100 100 100

PhymmBL4 100 100 100 100

RAIphy 500 335 400 412

Measurements of sensitivity, precision, and resource consumption on three simulated data sets.
1analysis performed on an AMD Opteron 250 (2.4 GHz) Sun Fire V40z with 32 GB RAM.
2analysis perfomed on an AMD Opteron 248 (2.2 GHz) workstation with 8 GB RAM.
3analysis performed on a 2.66 GHz Intel Core i7 MacBook Pro running Mac OS X 10.7.1 with 8 GB 1067 MHz DDR3 RAM.
4input sequences were broken up into smaller files.

RAIphy 238 bp RefSeq data set
This data set, which consists of 477,000 sequences of
average length 238 bp, originally used by Nalbantoglu et
al. [28], was downloaded from the RAIphy web site. All
classifications were performed at the genus rank.

Discussion
From the composition-based analyses, we can make sev-
eral observations.

1. PhyloPythiaS took the longest to train (∼ 3 days), but
its classification step was relatively fast (∼ 41× faster
than PhymmBL). However, the fastest program was
RAIphy, which took a negligible amount of time to
train, and classified sequences ∼ 4× faster than
PhyloPythiaS and ∼ 159× faster than PhymmBL
(Table 6).

2. NBC displayed the highest average sensitivity and
precision (97.4%), and PhymmBL displayed the
second-highest average sensitivity and precision
(76%) (Table 6).

3. PhyloPythiaS displayed very low average sensitivity
(2.4%), but competitive average precision (70.9%)
(Table 6).

4. Average precision is lower for composition-based
programs than for alignment-based programs, but
this is probably mainly due to the fact that
classifications were made at the genus rank for
composition-based classifications, and primarily at
the phylum rank for alignment-based classifications
(Tables 2 and 6).

5. Composition-based programs are supposed to excel
at classifying sequences that are not exactly
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represented in the database, so it would be
interesting to compare the performance of these
programs in that type of analysis (see “clade-level
exclusions” in Brady and Salzberg [27]).

Phylogenetics
In the phylogenetics category, we selected two programs
to evaluate: MLTreeMap (version 2.061) and Treephyler
(1.1). Based on our experience using these programs, we
note the following:

1. The MLTreeMap web interface limits an analysis to
50,000 sequences, so we used the command line
version. The MLTreeMap workflow makes callouts
to BLAST, Gblocks [42], HMMER [43], and RAxML
[44], and is very sensitive to the versions of these
dependencies used, so it is important to use the
specific versions of these programs that are bundled
with MLTreeMap.

2. Treephyler requires that the input sequences be
converted to amino acids, and corresponding UFO
[45] assignments provided. Thus, we performed a
6-frame translation of our DNA input sequences, and
used the UFO web server to assign protein sequences
to Pfam domains. These files were then used as input
to Treephyler.

3. Treephyler is capable of utilizing multiple processing
cores during analysis.

The only simulated data set associated with the
MLTreeMap and Treephyler publications is the simulated
medium complexity (simMC) PhyloPythia data set, so we
analyzed this with both programs. Percentage of sequence
classified, sensitivity, precision, and resource consump-
tion are shown for the phylogenetic-based programs in
Table 7.
PhyloPythia 961 bp simMC data set
This data set, which consists of 124,941 sequences of aver-
age length 961 bp, originally used by Patil et al. [39], was
downloaded from the FAMES web site. All classifications
were performed at the genus rank.
Discussion
From the phylogenetic-based analyses, we can make sev-
eral observations.

1. Treephyler took twice as long to run as MLTreeMap,
but was ∼ 8× more sensitive and achieved higher
precision. (Table 7).

2. MLTreeMap and Treephyler made some
assignments at taxonomic ranks higher than genus
that were not included in this analysis, but would
otherwise be useful.

3. MLTreeMap and Treephyler are capable of
producing measures of confidence of assignment,
which we did not include in this analysis but would
be of practical use in most scenarios.

Comparison of all programs
All 10 programs were used to analyze the simulated
medium complexity (simMC) PhyloPythia data set, so it is
interesting to compare their relative performance on this
particular data set.

1. Composition-based programs displayed the highest
average sensitivity (50.4%), and alignment-based
programs displayed the highest average precision
(93.7%) (Tables 2 and 6).

2. The two most computationally expensive programs,
CARMA and MEGAN, achieved the highest
precision (97.4% and 98.1%, respectively) (Table 2).

3. In terms of best combined sensitivity and precision,
NBC outperformed all other programs, achieving
sensitivity and precision of 95.4% (Table 6).

Conclusions
The performance of a particular category of programs var-
ied substantially between data sets. The precise reasons
for this are likely a complex function of sample taxonomic
composition and diversity, level of sequence representa-
tion in databases, read lengths and read quality. In general,
however, if a data set was challenging for one program, it
was challenging for the other programs in that category.
The overall variance of the statistics makes it difficult to
make definitive statements about the superiority of one
program or method over another, but we can state some
broad conclusions.
In general, high sensitivity is undesirable if correspond-

ing precision is low. However, very precise methods that
do not assign a large fraction of sequences may still be use-
ful, depending on the application. For example, we have
shown that in some cases, classifying only a small percent-
age of a sample may still be enough to recapitulate the
correct organismal distribution, especially at a high rank
(e.g., phylum). Methods that search for marker genes in a
metagenomic sample interrogate relatively few sequences,

Table 7 Performance of phylogenetic-basedprograms

Program % of sequence classified Sensitivity (%) Precision (%) CPU Runtime (minutes)

MLTreeMap1 0.9 0.8 81.4 3344

Treephyler1 6.6 6.3 95.7 7444

Measurements of sensitivity, precision, and resource consumption on the PhyloPythia 961 bp data set.
1analysis performed on an AMD Opteron 250 (2.4 GHz) Sun Fire V40z with 32 GB RAM.
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but as a consequence run quickly and with high precision.
In a targeted sequencing experiment, phylogenetic meth-
ods and other methods that use marker genes might thus
be especially appropriate.
In general, composition-based programs classified

sequences the fastest, once they were trained. Phyloge-
netic programs might be the most computationally inten-
sive on a per-read basis, but owing to their use of marker
genes only ran for an intermediate amount of time in our
experiments. As expected, BLAST-based programs that
did not use marker genes consumed the bulk of the com-
puting resources in our study. Researchers should take
note of the fact that programs vary by orders of magnitude
in computational resource requirements, and should thus
choose programs appropriately depending on the com-
puting resources they have access to, the amount of data
to analyze, and the particular bioinformatic application.
In addition, some programs are much easier to set up
and use than others. Of course, there is often a tradeoff
between level of flexibility and configurability, and ease of
use.
Taxonomic sequence classification is a fundamental step

in metagenomic analyses, as classification accuracy has
a direct impact on downstream analyses and the con-
clusions drawn from them. Therefore, it is important to
be aware of the wide variety of tools that currently exist
to address this need, and to choose the best performing
and most appropriate tools for a given analysis and set of
resource constraints.

Methods
Program classification
Table 1 was created and filled in manually using appro-
priate literature, program web sites, and documentation
as necessary. In order to cluster the programs, we wrote a
Perl script to construct a matrix containing a measure of
similarity, or distance, for each possible pair of programs,
defined as follows:

distance(program1, program2)

=
n∑

a=1
distance(program1[ a] , program2[ a] )

where n is the number of program attributes (equal to the
number of columns in the table).
Distances are calculated as follows:

if program1[a] == program2[a] then
distance(program1[a], program2[a]) = 0

else if common(program1[a], program2[a]) == 0 then
distance(program1[a], program2[a]) = 1

else

distance(program1[ a] , program2[ a] )
= common(program1[a],program2[a])

greater(program1[a],program2[a])
end if

where common(program1[ a] , program2[ a] ) = the num-
ber of elements the two attributes share in common,
and greater(program1[ a] , program2[ a] ) = the number
of elements in the attribute with the greater number of
elements.
The distance matrix was provided as input to the

NEIGHBOR program from the PHYLIP package [46]. The
resulting neighbor-joining tree was plotted in FigTree [47]
and labeled to produce Figure 1.

Tool usage and result processing
Custom Perl scripts were written to parse correct annota-
tions out of the FASTA headers of the various input files
for each data set. The PhymmBL data files did not con-
tain annotations, so we used NCBI E-Utilities to access the
NCBI taxonomy database and retrieve the scientific clas-
sification for each sequence. The classifications made by
each programwere also parsed out of program output files
with Perl scripts, and compared to the correct annotations
to calculate sensitivity and precision.
Pearson’s correlation coefficient was used to compare

the known distribution of bacterial phyla to the classifi-
cations made by the various alignment programs via the
cor() function in R [48].
Runtimes were calculated in minutes of wall clock time;

if a process ran in parallel, then the runtime was multi-
plied by the number of parallel processes. The runtimes
are not directly comparable because analyses used het-
erogeneous hardware. Memory usage was calculated by
inspecting process memory usage intermittently, and thus
is also imperfect. Both measures should still serve as the
basis for a rough comparison, however.
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