Skip to main content

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Table 4 Prediction performance on different sliding windows for encoding input vectors on the CASP8 data set.

From: LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

  5 7 9 11 17 27 37 47 57 All
Sen(%) 48.00 51.06 63.30 51.43 53.74 45.27 49.24 58.53 51.25 52.11
Spe(%) 96.86 96.27 93.15 96.10 95.02 97.93 96.35 92.89 95.52 97.11
Acc(%) 93.93 93.46 90.97 93.31 92.37 94.65 93.41 90.59 92.73 94.19
MCC 0.42 0.43 0.42 0.42 0.39 0.43 0.39 0.37 0.38 0.44
Prec(%) 48.95 48.80 39.94 46.42 38.04 53.58 43.04 33.94 39.75 50.49
F1(%) 40.97 42.02 41.17 41.00 38.66 41.16 38.97 37.17 38.54 43.02
  1. The ensemble of all sliding windows is shown at the last column of the table.
  2. The italic numbers denote the best performance among different sliding windows on the measure of MCC, while the italic number in the last column is for the combination of all sliding windows.