Skip to main content

Advertisement

Exploring the membrane potential of a simple dual membrane system by using a constant electric field

Background

Connexins (Cxs) constitute Gap Junction Channels (GJCs). GJCs connect the cytoplasm of adjacent cells providing a hydrophilic path between cells that allow the movement, by passive diffusion, of water, cations and small molecules. The opening or closing of GJCs is dependent on the voltage difference between the apposed cells and/or the membrane potential. An approach to understand the voltage gating mechanisms of GJCs is to study a simplified system that can account for the basic features of a GJC.

Results

In this work, we have devised a series of simple systems bearing in mind that idea. The systems here presented are: i) a dual membrane, ii) a dual membrane with a pore on each membrane, iii) a dual membrane with a channel connecting both membranes and iv) a dual membrane with a channel having explicit charges inside.

In all cases, membrane and pore were built solely with carbon atoms. Both equilibrium and non-equilibrium MD simulations were performed in all systems. Non-equilibrium simulations were produced by applying a uniform external electric field in order to produce a potential difference across the membranes. We then performed detailed analyses of the electrostatic potential, ionic current and the potential of mean force of an ion through the system pores.

Conclusions

This study provided important insights regarding the behavior of the electrostatic potential and ion currents inside simple dual membrane systems with or without a connecting channel, and will be useful in understanding the voltage effects and ion transport mechanisms of GJCs.

Author information

Correspondence to Yerko Escalona.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Escalona, Y., Garate, J.A. & Perez-Acle, T. Exploring the membrane potential of a simple dual membrane system by using a constant electric field. BMC Bioinformatics 16, A5 (2015). https://doi.org/10.1186/1471-2105-16-S8-A5

Download citation

Keywords

  • Membrane Potential
  • Electrostatic Potential
  • Adjacent Cell
  • Combinatorial Library
  • External Electric Field