SLF13 (2D DNA)
|
Neural Network (nhu = 16, stop-fract = 0.1)
|
87.8
|
116.3
|
0.001
|
0.43
|
|
SVM (linear, DAG, C = 1)
|
87.9
|
0.7
|
0.088
|
0.36
|
|
SVM (rbf, DAG, sigma = 8, C = 16)
|
89.4
|
1.1
|
0.470
|
0.03
|
|
SVM (exprbf, maxwin, sigma = 4, C = 4)
|
89.2
|
3.5
|
0.530
|
0.04
|
|
SVM (poly, maxwin, degree = 2, C = 0.01)
|
88.6
|
4.7
|
0.140
|
0.21
|
|
Adaboost (nhu = 8, nboost = 64)
|
88.9
|
55.2
|
0.018
|
0.10
|
|
Bagging (nhu = 64, nbag = 32)
|
88.9
|
111.0
|
0.078
|
0.09
|
|
Mixtures-of-Experts (nhu = 16, nhug = 64, ne = 16)
|
89.7
|
38.3
|
0.010
|
0.02
|
SLF8 (2D)
|
Neural Network (nhu = 16, stop-fract = 0.3)
|
86.1
|
139.1
|
0.001
|
0.53
|
|
SVM (linear, DAG, C = 1)
|
84.9
|
0.7
|
0.075
|
0.83
|
|
SVM (rbf, maxwin, sigma = 8, C = 64)
|
87.9
|
11.4
|
1.600
|
0.15
|
|
SVM (exprbf, maxwin, sigma = 8, C = 16)
|
88.1
|
4.0
|
0.540
|
0.02
|
|
SVM (poly, maxwin, degree = 2, C = 0.01)
|
86.7
|
5.2
|
0.170
|
0.37
|
|
Adaboost (nhu = 32, nboost = 128)
|
88.2
|
412.0
|
0.190
|
0.12
|
|
Bagging (nhu = 64, nbag = 64)
|
87.2
|
238.2
|
0.160
|
0.17
|
|
Mixtures-of-Experts (nhu = 32, nhug = 16, ne = 4)
|
87.0
|
11.6
|
0.002
|
0.22
|
SLF10 (3D DNA)
|
Neural Network (nhu = 32, stop-fract = 0.1)
|
95.3
|
740.3
|
0.001
|
0.06
|
|
SVM (linear, DAG, C = 8)
|
93.3
|
0.3
|
0.043
|
0.47
|
|
SVM (rbf, maxwin, sigma = 2, C = 64)
|
95.0
|
2.3
|
0.230
|
0.08
|
|
SVM (exprbf, DAG, sigma = 1, C = 1)
|
95.2
|
0.5
|
0.081
|
0.06
|
|
SVM (poly, maxwin, degree = 2, C = 1)
|
93.1
|
2.0
|
0.067
|
0.51
|
|
Adaboost (nhu = 32, nboost = 32)
|
93.2
|
43.2
|
0.016
|
0.46
|
|
Bagging (nhu = 64, nbag = 4)
|
89.4
|
6.8
|
0.003
|
0.99
|
|
Mixtures-of-Experts (nhu = 32, nhug = 64, ne = 16)
|
92.2
|
45.8
|
0.007
|
0.74
|
SLF14 (3D)
|
Neural Network (nhu = 32, stop-fract = 0)
|
88.4
|
172.0
|
0.001
|
0.02
|
|
SVM (linear, DAG, C = 32)
|
86.5
|
1.0
|
0.047
|
0.12
|
|
SVM (rbf, maxwin, sigma = 2, C = 32)
|
86.6
|
4.6
|
0.290
|
0.17
|
|
SVM (exprbf, maxwin, sigma = 2, C = 8)
|
89.1
|
1.4
|
0.170
|
0.05
|
|
SVM (poly, maxwin, degree = 2, C = 2)
|
87.3
|
8.3
|
0.068
|
0.05
|
|
Adaboost (nhu = 64, nboost = 64)
|
87.7
|
144.3
|
0.085
|
0.03
|
|
Bagging (nhu = 64, nbag = 256)
|
82.2
|
505.7
|
0.340
|
0.82
|
|
Mixtures-of-Experts (nhu = 16, nhug = 8, ne = 2)
|
83.8
|
2.9
|
0.001
|
0.59
|