Skip to main content

Table 1 Systematic bias in four biological data sets.

From: OpWise: Operons aid the identification of differentially expressed genes in bacterial microarray experiments

 

dvSalt30

ecox

shHeat5

shCold5

Typical bias

0.25

0.12

0.37

0.88

Bias/signal (%)

70.4%

19.6%

49.9%

86.9%

Bias/replication error (%)

72.7%

35.8%

143.1%

199.1%

Bias/total (%)

52.4%

15.8%

47.2%

74.6%

Significance of bias

    

   Likelihood ratio

1.74e+02

9.38e+00

1.48e+03

1.81e+03

   p-value

< 10-77

< 10-5

< 10-646

< 10-786

  1. The typical size of the bias in the apparent log2-ratio is the square root of its variance, or E ( 1 / θ i ⋅ γ ) ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaGcaaqaaiabdweafjabcIcaOiabigdaXiabc+caVGGaciab=H7aXnaaBaaaleaacqWGPbqAaeqaaOGaeyyXICTae83SdCMaeiykaKIaeiykaKcaleqaaaaa@3976@ , where E(1/θi) = α/(ν - 1). The bias over the signal is the square root of the ratio of variances ( β / γ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaGcaaqaaGGaciab=j7aIjabc+caViab=n7aNbWcbeaaaaa@30F7@ ). The bias over the replicate error is also the square root of the ratio of variances ( 1 / γ MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqee0evGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOaa@2FC2@ ), and considers a single measurement (is not divided by the number of replicates). We also report the typical bias divided by the standard deviation of the observed log-changes mi. To show that the bias is statistically significant, we compared the likelihood ratio of the best-fitting model given systematic error to that without (with γ = ∞), using Eq. 10. Because we are testing whether γ lies at a boundary, in the absence of bias the distribution of 2·log(ratio) approximates a 50:50 mixture of two chi-squared distributions with 0 and 1 degrees of freedom [26].