Skip to main content

Table 3 Weights calculated using neighborhood function for triangular lattice

From: CellExcite: an efficient simulation environment for excitable cells

# 0 1 2 3 4 5 6 7 8
d 0 r 3 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobdaGcaaqaaKqzWfGaeG4mamdaleqaaOGaemOCaihaaa@344B@ 2r 7 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobdaGcaaqaaKqzWfGaeG4naCdaleqaaOGaemOCaihaaa@3453@ 3r 2 3 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobjugCbiabikdaYOWaaOaaaeaajugCbiabiodaZaWcbeaakiabdkhaYbaa@3626@ 13 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobdaGcaaqaaKqzWfGaeGymaeJaeG4mamdaleqaaOGaemOCaihaaa@353B@ 4r
ν r Δ ( d ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbaWaaCbiaeaajugCbiabe27aUPWaaSbaaSqaaiabdkhaYbqabaaabeqaaKqzWfGaeyiLdqeaaOWaaeWaaeaacqWGKbazaiaawIcacaGLPaaaaaa@39A1@ −6 1 N/A N/A N/A N/A N/A N/A N/A
ν Δ 2 r ( d ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbaWaaCbiaeaajugCbiabe27aUbWcbeqaaKqzWfGaeyiLdqeaaOWaaSbaaSqaaiabikdaYiabdkhaYbqabaGcdaqadaqaaiabdsgaKbGaayjkaiaawMcaaaaa@3A9E@ −42.96 4.48 1.68 1 N/A N/A N/A N/A N/A
ν Δ 3 r ( d ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbaqcfa4aaCbiaOqaaKqzafGaeqyVd4galeqabaqcLbuacqGHuoaraaqcfa4aaSbaaeaacqaIZaWmcqWGYbGCaeqaaiaaykW7daqadaqaaiabdsgaKbGaayjkaiaawMcaaaaa@3CD2@ −191.70 14.39 7.38 5.29 1.94 1 N/A N/A N/A
ν Δ 2 r ( d ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbaWaaCbiaeaajugCbiabe27aUbWcbeqaaKqzWfGaeyiLdqeaaOWaaSbaaSqaaiabikdaYiabdkhaYbqabaGcdaqadaqaaiabdsgaKbGaayjkaiaawMcaaaaa@3A9E@ −726.24 42.52 25.79 20.08 9.48 5.75 2.72 2.12 1