Skip to main content
Fig. 1 | BMC Bioinformatics

Fig. 1

From: Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies

Fig. 1

An illustration of our proposed workflow for creating volumetric models of the neurons from their morphological skeletons. a A graphical representation of a typical morphological skeleton of a neuron. To eliminate any visual distractions, the workflow will be illustrated using a single arbor sampled only at the branching points (b-f). The blue circles in b and c represent the positions of morphological samples of the neurons and the radii of their respective cross-sections. d The morphology structure is created by connecting the samples, segments, and branches together. e The primary branches that represent a continuation along the arbor (in the same color) are identified according to the radii of samples of the children branches at the bifurcation points. f The connected branches identified in (e) are converted into multiple mesh objects where each object is smooth and watertight. g The mesh objects are converted to intersecting volumetric shells with surface voxelization in the same volume. h Solid voxelization. The volume created in (g) is flood-filled to cover the extra-cellular space of the neurons. i The final volumetric model of a neuron is created by inverting the flood-filled volume to reflect a smooth, continuous and plausible representation of the neuron

Back to article page