Skip to main content

Table 3 Unimodal benchmark functions

From: A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features

Function Dim Range f min
\( {f}_1(x)={\sum}_{i=1}^n{x_i}^2 \) 30 [− 100, 100] 0
\( {f}_2(x)={\sum}_{i=1}^n\mid {x}_i\mid +{\prod}_{i=1}^n\mid {x}_i\mid \) 30 [− 10, 10] 0
\( {f}_3(x)={\sum}_{i=1}^n{\left({\sum}_{j-1}^i{x}_j\right)}^2 \) 30 [− 100, 100] 0
f4(x) = maxi{| xi| , 1 ≤ i ≤ n} 30 [− 100, 100] 0
\( {f}_5(x)={\sum}_{i=1}^{n-1}\left[100{\left({x}_{i+1}-{x_i}^2\right)}^2+{\left({x}_i-1\right)}^2\right] \) 30 [− 30, 30] 0
\( {f}_6(x)={\sum}_{i=1}^n{\left(\left[{x}_i+0.5\right]\right)}^2 \) 30 [− 100, 100] 0
\( {f}_7(x)={\sum}_{i=1}^n{ix_i}^4+ random\left[0,1\right) \) 30 [− 1.28, 1.28] 0