Skip to main content

Table 1 Simulation designs for each scenario and corresponding true loading vectors. All true vectors are normalized to have l2-norm 1

From: Sparse multiple co-Inertia analysis with application to integrative analysis of multi -Omics data

nen=(3,4,5)

 

nel=10

nel=20

σ2=1.2

scenario 1

scenario 2

 

\(\boldsymbol {a}_{1}=((\boldsymbol {1}_{3}, \boldsymbol {0}_{27})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{1}=((\boldsymbol {1}_{3}, \boldsymbol {0}_{27})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

 

\(\boldsymbol {a}_{2}=((\boldsymbol {1}_{4}, \boldsymbol {0}_{36})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{2}=((\boldsymbol {1}_{4}, \boldsymbol {0}_{36})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

 

\(\boldsymbol {a}_{3}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{45})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{3}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{45})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

σ2=2.5

scenario 3

scenario 4

 

\(\boldsymbol {a}_{1}=((\boldsymbol {1}_{3}, \boldsymbol {0}_{27})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{1}=((\boldsymbol {1}_{3}, \boldsymbol {0}_{27})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

 

\(\boldsymbol {a}_{2}=((\boldsymbol {1}_{4}, \boldsymbol {0}_{36})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{2}=((\boldsymbol {1}_{4}, \boldsymbol {0}_{36})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

 

\(\boldsymbol {a}_{3}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{45})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{3}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{45})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

nen=(5,5,5)

 

nel=10

nel=20

σ2=1.2

scenario 5

scenario 6

 

\(\boldsymbol {a}_{1}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{25})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{1}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{25})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

 

\(\boldsymbol {a}_{2}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{35})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{2}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{35})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

 

\(\boldsymbol {a}_{3}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{45})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{3}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{45})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

σ2=2.5

scenario 7

scenario 8

 

\(\boldsymbol {a}_{1}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{25})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{1}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{25})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

 

\(\boldsymbol {a}_{2}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{35})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{2}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{35})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)

 

\(\boldsymbol {a}_{3}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{45})^{\intercal } \bigotimes \boldsymbol {1}_{10})\)

\(\boldsymbol {a}_{3}=((\boldsymbol {1}_{5}, \boldsymbol {0}_{45})^{\intercal } \bigotimes \boldsymbol {1}_{20})\)