Skip to main content

Table 3 Comparative analysis of the Deep Ensemble design with various Deep learning architectures with a data split of 70:20:10.

From: Deep ensemble approach for pathogen classification in large-scale images using patch-based training and hyper-parameter optimization

Model

Methods

Validation-loss

Validation-accuracy

Test-accuracy

Proposed model I

(MobileNetV2+InceptionV3)

FT on ADS-ALUF

0.0275

99.41

99.91

Proposed model II

(GoogleNet+SqueezeNet)

FT on ADS-ALUF

0.0953

97.14

99.79

AlexNet

Trained on ODS-NPTW

4.1254

13.53

11.98

PT on ODS-NPTW

0.8999

75.47

76.43

FT on ODS-PTW

0.2375

93.10

93.10

FT on ADS-ALUF

0.1056

96.23

96.09

SqueezeNet

Trained on ODS-NPTW

3.1779

6.51

8.07

PT on ODS-NPTW

0.3370

79.83

82.16

FT on ODS-PTW

0.3102

87.51

87.89

FT on ADS-ALUF

0.2614

94.60

93.62

GoogleNet

Trained on ODS-NPTW

4.1299

2.93

1.95

PT on ODS-NPTW

0.3924

87.77

88.41

FT on ODS-PTW

0.5174

90.83

90.63

FT on ADS-ALUF

0.2897

95.64

93.75

MobileNetV2

Trained on ODS-NPTW

3.1169

5.27

5.86

PT on ODS-NPTW

2.1408

44.05

39.84

FT on ODS-PTW

0.2569

93.10

92.45

FT on ADS-ALUF

0.0212

97.85

97.79

InceptionV3

Trained on ODS-NPTW

3.4025

1.69

0.91

PT on ODS-NPTW

2.4302

56.93

57.03

FT on ODS-PTW

0.4128

96.62

96.74

FT on ADS-ALUF

0.0446

98.39

97.92

  1. Here, ADS, ODS, PTW, NPTW, ALUF, PT, FT stands for augmented dataset, original dataset, pre-trained weights, no pre-trained weights, all layers un-frozen, parameter-tuning, fine-tuned