Skip to main content

Table 4 Comparative analysis of the Deep Ensemble design with various deep learning architectures with a data split of 60:20:20.

From: Deep ensemble approach for pathogen classification in large-scale images using patch-based training and hyper-parameter optimization

Model

Methods

Validation-loss

Validation-accuracy

Test-accuracy

Our proposed model I

(MobileNetV2+InceptionV3)

FT on ADS-ALUF

0.0284

98.96

99.94

Proposed model II

(GoogleNet+SqueezeNet)

FT on ADS-ALUF

0.3087

97.72

99.85

AlexNet

Trained on ODS-NPTW

5.4068

8.07

8.46

PT on ODS-NPTW

0.6312

74.37

74.87

FT on ODS-PTW

0.3788

95.64

94.14

FT on ADS-ALUF

0.3230

94.93

94.86

SqueezeNet

Trained on ODS-NPTW

3.1764

5.86

5.53

PT on ODS-NPTW

0.3806

79.38

79.62

FT on ODS-PTW

0.2673

86.47

86.33

FT on ADS-ALUF

0.0646

93.43

92.90

GoogleNet

Trained on ODS-NPTW

3.2394

4.16

4.17

PT on ODS-NPTW

0.3559

88.68

88.35

FT on ODS-PTW

0.3937

91.35

90.76

FT on ADS-ALUF

0.2774

95.71

95.83

MobileNetV2

Trained on ODS-NPTW

3.3572

4.16

4.10

PT on ODS-NPTW

1.8974

43.98

41.73

FT on ODS-PTW

0.4196

93.62

94.73

FT on ADS-ALUF

0.0879

95.95

96.16

InceptionV3

Trained on ODS-NPTW

3.3490

4.03

4.23

PT on ODS-NPTW

2.3959

58.82

57.94

FT on ODS-PTW

0.4737

95.51

96.06

FT on ADS-ALUF

0.2032

97.14

96.68

  1. Here, ADS, ODS, PTW, NPTW, ALUF, PT, FT stands for augmented dataset, original dataset, pre-trained weights, no pre-trained weights, all layers un-frozen, parameter-tuning, fine-tuned