Wittner B, Sgroi D, Ryan P, Bruinsma T, Glas A, Male A, Dahiya S, Habin K, Bernards R, Haber D, et al.: Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort. Clin Cancer Res 2008, 14(10):2988.
Article
PubMed Central
CAS
PubMed
Google Scholar
Horlings H, Warmoes M, Kerst J, Helgason H, De Jong D, Van't Veer L: Successful classification of metastatic carcinoma of known primary using the CUPPRINT. J Clin Oncol 2006, 24: 20028.
Google Scholar
Ihaka R, Gentleman R: R: A Language for Data Analysis and Graphics. J Comput Graph Stat 1996, 5(3):299–314.
Google Scholar
The MathWorks Inc: Matlab. Natick, MA. 1998.
Google Scholar
Tarraga J, Medina I, Carbonell J, Huerta-Cepas J, Minguez P, Alloza E, Al-Shahrour F, Vegas-Azcarate S, Goetz S, Escobar P, et al.: GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Res 2008, 31(13):3461–3467.
Google Scholar
Kapushesky M, Kemmeren P, Culhane A, Durinck S, Ihmels J, Korner C, Kull M, Torrente A, Sarkans U, Vilo J, et al.: Expression Profiler: next generation-an online platform for analysis of microarray data. Nucleic Acids Res 2004, (32 Web Server):W465.
Google Scholar
Diaz-Uriarte R, Alibes A, Morrissey E, et al.: Asterias: integrated analysis of expression and aCGH data using an open-source, web-based, parallelized software suite. Nucleic Acids Res 2007, (35 Web Server):W75.
Google Scholar
Zhu Y, Zhu Y, Xu W: EzArray: A web-based highly automated Affymetrix expression array data management and analysis system. BMC Bioinformatics 2008, 9: 46.
Article
PubMed Central
PubMed
Google Scholar
Rainer J, Sanchez-Cabo F, Stocker G, Sturn A, Trajanoski Z: CARMAweb: comprehensive R-and bioconductor-based web service for microarray data analysis. Nucleic Acids Res 2006, (34 Web Server):W498.
Google Scholar
Rehrauer H, Zoller S, Schlapbach R: MAGMA: analysis of two-channel microarrays made easy. Nucleic Acids Research 2007, (35 Web Server):W86.
Google Scholar
Hokamp K, Roche F, Acab M, Rousseau M, Kuo B, Goode D, Aeschliman D, Bryan J, Babiuk L, Hancock R, et al.: ArrayPipe: a flexible processing pipeline for microarray data. Nucleic Acids Res 2004, (32 Web Server):W457.
Google Scholar
Psarros M, Heber S, Sick M, Thoppae G, Harshman K, Sick B: RACE: remote analysis computation for gene expression data. Nucleic Acids Res 2005, (33 Web Server):W638.
Google Scholar
Xia X, McClelland M, Wang Y: WebArray: an online platform for microarray data analysis. BMC Bioinformatics 2005, 6: 306.
Article
PubMed Central
PubMed
Google Scholar
Romualdi C, Vitulo N, Favero M, Lanfranchi G: MIDAW: a web tool for statistical analysis of microarray data. Nucleic Acids Res 2005, (33 Web Server):W644.
Google Scholar
Wu C, Fu Y, Murali T, Kasif S: Gene expression module discovery using Gibbs sampling. Genome Inform 2004, 15: 239–248.
CAS
PubMed
Google Scholar
Lee J, Sinkovits R, Mock D, Rab E, Cai J, Yang P, Saunders B, Hsueh R, Choi S, Subramaniam S, et al.: Components of the antigen processing and presentation pathway revealed by gene expression microarray analysis following B cell antigen receptor (BCR) stimulation. BMC Bioinformatics 2006, 7: 237.
Article
PubMed Central
PubMed
Google Scholar
Aburatani S, Goto K, Saito S, Toh H, Horimoto K: ASIAN: a web server for inferring a regulatory network framework from gene expression profiles. Nucleic Acids Res 2005, (33 Web Server):W659.
Google Scholar
Lu Y, He X, Zhong S: Cross-species microarray analysis with the OSCAR system suggests an INSR -> Pax6 -> NQO1 neuro-protective pathway in aging and Alzheimer's disease. Nucleic Acids Res 2007, (35 Web Server):W105.
Google Scholar
Saeys Y, Abeel T, Peer Y: Robust Feature Selection Using Ensemble Feature Selection Techniques. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases-Part II. Springer-Verlag Berlin, Heidelberg; 2008:313–325.
Chapter
Google Scholar
Tan A, Gilbert D: Ensemble machine learning on gene expression data for cancer classification. Appl Bioinformatics 2003, 2(3 Suppl):S75-S83.
CAS
PubMed
Google Scholar
Monti S, Tamayo P, Mesirov J, Golub T: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 2003, 52: 91–118.
Article
Google Scholar
Swift S, Tucker A, Vinciotti V, Martin N, Orengo C, Liu X, Kellam P: Consensus clustering and functional interpretation of gene-expression data. Genome Biol 2004, 5(11):R94.
Article
PubMed Central
PubMed
Google Scholar
Shabalin A, Tjelmeland H, Fan C, Perou C, Nobel A: Merging two gene-expression studies via cross-platform normalization. Bioinformatics 2008, 24(9):1154.
Article
CAS
PubMed
Google Scholar
Warnat P, Eils R, Brors B: Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics 2005, 6: 265.
Article
PubMed Central
PubMed
Google Scholar
VRMLGen R software package[http://bree.cs.nott.ac.uk/vrmlgen]
Irizarry R, Bolstad B, Collin F, Cope L, Hobbs B, Speed T: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31(4):e15.
Article
PubMed Central
PubMed
Google Scholar
Edgar R, Domrachev M, Lash A: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30: 207–210.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80.
Article
PubMed Central
PubMed
Google Scholar
Walker W, Liao I, Gilbert D, Wong B, Pollard K, McCulloch C, Lit L, Sharp F: Empirical Bayes accomodation of batch-effects in microarray data using identical replicate reference samples: application to RNA expression profiling of blood from Duchenne muscular dystrophy patients. BMC Genomics 2008, 9: 494.
Article
PubMed Central
PubMed
Google Scholar
Martinez R, Pasquier C, Pasquier N: GenMiner: Mining Informative Association Rules from Genomic Data. Proceedings of the 2007 IEEE International Conference on Bioinformatics and Biomedicine 2007, 15–22.
Chapter
Google Scholar
Lonnstedt I, Speed T: Replicated microarray data. Stat Sin 2002, 12: 31–46.
Google Scholar
Smyth G: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3: 3.
Google Scholar
Tusher V, Tibshirani R, Chu G, et al.: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001, 98(9):5116–5121.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hall MA: Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning. Proc. 17th International Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA 2000, 359–366.
Google Scholar
Breiman L: Random Forests. Machine Learning 2001, 45: 5–32.
Article
Google Scholar
Boulesteix A, Strimmer K: Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinform 2007, 8: 32–44.
Article
CAS
PubMed
Google Scholar
Dennis G, Sherman B, Hosack D, Yang J, Gao W, Lane H, Lempicki R: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003, 4(9):R60.
Article
PubMed Central
Google Scholar
Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002, 99(10):6567–6572.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kohonen T: Self-Organizing Maps. Berlin: Springer Verlag; 2001.
Book
Google Scholar
Herrero J, Valencia A, Dopazo J: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 2001, 17(2):126–136.
Article
CAS
PubMed
Google Scholar
Chipman H, Tibshirani R: Hybrid hierarchical clustering with applications to microarray data. Biostatistics 2006, 7(2):286–301.
Article
PubMed
Google Scholar
Szu H: Fast simulated annealing. AIP Conference Proceedings 1986, 151: 420.
Article
Google Scholar
Barthel D, Hirst J, Blazewicz J, Burke E, Krasnogor N: ProCKSI: A decision support system for protein (structure) comparison, knowledge, similarity and information. BMC Bioinformatics 2007, 8: 416.
Article
PubMed Central
PubMed
Google Scholar
Tritchler D, Parkhomenko E, Beyene J: Filtering genes for cluster and network analysis. BMC Bioinformatics 2009, 10: 193.
Article
PubMed Central
PubMed
Google Scholar
Rousseeuw P: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Mat 1987, 20: 53–65.
Article
Google Scholar
Chang CC, Lin CJ:LIBSVM: a library for support vector machines. 2001. [http://www.csie.ntu.edu.tw/~cjlin/libsvm]
Google Scholar
Bacardit J, Burke E, Krasnogor N: Improving the scalability of rule-based evolutionary learning. Memetic Computing 2009, 1: 55–67.
Article
Google Scholar
Bacardit J, Stout M, Hirst J, Krasnogor N: Data Mining in Proteomics with Learning Classifier Systems. In Learning Classifier Systems in Data Mining. Edited by: Bull L, Bernado Mansilla E, Holmes J. Springer; 2008:17–46.
Chapter
Google Scholar
Wood I, Visscher P, Mengersen K: Classification based upon gene expression data: bias and precision of error rates. Bioinformatics 2007, 23(11):1363.
Article
CAS
PubMed
Google Scholar
Guo Z, et al.: Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics 2005, 6: 58.
Article
PubMed Central
PubMed
Google Scholar
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight S, Eppig J, et al.: Gene Ontology: tool for the unification of biology. Nat Genet 2000, 25: 25–29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28: 27.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim S, Volsky D: PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 2005, 6: 144.
Article
PubMed Central
PubMed
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B (Methodological) 1995, 57: 289–300.
Google Scholar
Armstrong S, Staunton J, Silverman L, Pieters R, den Boer M, Minden M, Sallan S, Lander E, Golub T, Korsmeyer S: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2001, 30: 41–47.
Article
PubMed
Google Scholar
Galiéque Z, Quief S, Hildebrand M, Denis C, Lecocq G, Collyn-d'Hooghe M, Bastard C, Yuille M, Dyer M, Kerckaert J: The B cell transcriptional coactivator BOB1/OBF1 gene fuses to the LAZ3/BCL6 gene by t(3;11)(q27;q23.1) chromosomal translocation in a B cell leukemia line (Karpas 231). Leukemia 1996, 10(4):579.
Google Scholar