Salzwedel K, Martin D, Sakalian M: Maturation inhibitors: a new therapeutic class targets the virus structure. AIDS Rev 2007, 9: 162–172.
PubMed
Google Scholar
Adamson CS, Ablan SD, Boeras I, Goila-Gaur R, Soheilian F, Nagashima K, Li F, Salzwedel K, Sakalian M, Wild CT, Freed EO: In vitro resistance to the human immunodeficiency virus type 1 maturation inhibitor PA-457 (Bevirimat). J Virol 2006, 80(22):10957–10971. 10.1128/JVI.01369-06
Article
CAS
PubMed
PubMed Central
Google Scholar
Li F, Zoumplis D, Matallana C, Kilgore N, Reddick M, Yunus A, Adamson C, Salzwedel K, Martin D, Allaway G, Freed E, Wild C: Determinants of activity of the HIV-1 maturation inhibitor PA-457. Virology 2006, 356: 217–24. 10.1016/j.virol.2006.07.023
Article
CAS
PubMed
Google Scholar
Adamson CS, Waki K, Ablan SD, Salzwedel K, Freed EO: Impact of human immunodeficiency virus type 1 resistance to protease inhibitors on evolution of resistance to the maturation inhibitor bevirimat (PA-457). J Virol 2009, 83(10):4884–4894. 10.1128/JVI.02659-08
Article
CAS
PubMed
PubMed Central
Google Scholar
Margot N, Gibbs C, Miller M: Phenotypic susceptibility to Bevirimat among HIV-infected patient isolates without prior exposure to Bevirimat. Proceedings of the 16th Conference on Retroviruses and Opportunistic Infections, Montreal, Canada 2009.
Google Scholar
Salzwedel K, Harmy F, Louvel S, Sakalian M, Reddick M, Finnegan C, Martin D, McCallister S, Klimkait T, Allaway G: Susceptibility of diverse HIV-1 patient isolates to the maturation inhibitor, Bevirimat (MPC-4326), is determined by clade-specific polymorphisms in Gag CA-SP1. Proceedings of the 16th Conference on Retroviruses and Opportunistic Infections, Montreal, Canada 2009.
Google Scholar
Baelen KV, Salzwedel K, Rondelez E, Eygen VV, Vos SD, Verheyen A, Steegen K, Verlinden Y, Allaway GP, Stuyver LJ: Susceptibility of human immunodeficiency virus type 1 to the maturation inhibitor bevirimat is modulated by baseline polymorphisms in Gag spacer peptide 1. Antimicrob Agents Chemother 2009, 53: 2185–2188. 10.1128/AAC.01650-08
Article
PubMed
PubMed Central
Google Scholar
McCallister S, Lalezari J, Richmond G, Thompson M, Harrigan R, Martin D, Salzwedel K, Allaway G: HIV-1 Gag polymorphisms determine treatment response to bevirimat (PA-457). Antivir Ther 2008, 13(Suppl 3):A10.
Google Scholar
Lathrop R, Steffen N, Raphael M, Deeds-Rubin S, Pazzani M, Cimoch P, See D, Tilles J: Knowledge-based avoidance of drug-resistant HIV mutants. AI MAGAZINE 1999, 20(1):13–25.
Google Scholar
Sevin AD, DeGruttola V, Nijhuis M, Schapiro JM, Foulkes AS, Para MF, Boucher CAB: Methods for Investigation of the Relationship between Drug-Susceptibility Phenotype and Human Immunodeficiency Virus Type 1 Genotype with Applications to AIDS Clinical Trials Group 333. J Infect Dis 2000, 182: 59–67. 10.1086/315673
Article
CAS
PubMed
Google Scholar
Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoffmann D, Korn K, Selbig J: Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype. Proc Natl Acad Sci USA 2002, 99(12):8271–8276. 10.1073/pnas.112177799
Article
CAS
PubMed
PubMed Central
Google Scholar
Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoffmann D, Korn K, Selbig J: Geno2pheno: Interpreting Genotypic HIV Drug Resistance Tests. IEEE Intelligent Systems 2001, 16: 35–41. 10.1109/5254.972080
Article
Google Scholar
Murray RJ, Lewis FI, Miller MD, Brown AJ: Genetic basis of variation in tenofovir drug susceptibility in HIV-1. AIDS 2008, 22(10):1113–23. 10.1097/QAD.0b013e32830184a1
Article
CAS
PubMed
Google Scholar
Resch W, Hoffman N, Swanstrom R: Improved success of phenotype prediction of the human immunodeficiency virus type 1 from envelope variable loop 3 sequence using neural networks. Virology 2001, 288: 51–62. 10.1006/viro.2001.1087
Article
CAS
PubMed
Google Scholar
Draghici S, Potter RB: Predicting HIV drug resistance with neural networks. Bioinformatics 2003, 19: 98–107. 10.1093/bioinformatics/19.1.98
Article
CAS
PubMed
Google Scholar
Wang D, Larder B: Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks. J Infect Dis 2003, 188(5):653–660. 10.1086/377453
Article
PubMed
Google Scholar
King R, Feng C, Sutherland A: Comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence 1995, 9(3):259–287. 10.1080/08839519508945477
Article
Google Scholar
Tzafestas S, Dalianis PJ, Anthopoulos G: On the overtraining phenomenon of backpropagation neural networks. Mathematics and computers in simulation 1996, 40: 505–663. 10.1016/0378-4754(96)90015-4
Article
Google Scholar
Banfield RE, Hall LO, Bowyer KW, Kegelmeyer WP: A comparison of decision tree ensemble creation techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007, 29(1):173–180. 10.1109/TPAMI.2007.250609
Article
PubMed
Google Scholar
Breiman L: Random Forests. Machine Learning 2001, 45: 5–32. 10.1023/A:1010933404324
Article
Google Scholar
Kingston J: Rule-based expert systems and beyond: an overview. British Association of Accountants' Conference 1987.
Google Scholar
Witten IH, Frank E: Data Mining. Morgan Kauffmann. 2000.
Google Scholar
Thompson J, Higgins D, Gibson T: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22: 4673–4680. 10.1093/nar/22.22.4673
Article
CAS
PubMed
PubMed Central
Google Scholar
Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000, 302: 205–217. 10.1006/jmbi.2000.4042
Article
CAS
PubMed
Google Scholar
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5: 113. 10.1186/1471-2105-5-113
Article
PubMed
PubMed Central
Google Scholar
Löytynoja A, Goldman N: An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 2005, 102(30):10557–10562. 10.1073/pnas.0409137102
Article
PubMed
PubMed Central
Google Scholar
Ong S, Lin H, Chen Y, Li Z, Cao Z: Efficacy of different protein descriptors in predicting protein functional families. BMC Bioinformatics 2007, 8: 300. 10.1186/1471-2105-8-300
Article
PubMed
PubMed Central
Google Scholar
Kernytsky A, Rost B: Using genetic algorithms to select most predictive protein features. Proteins 2009, 75: 75–88. 10.1002/prot.22211
Article
CAS
PubMed
Google Scholar
Nanni L, Lumini A: Using ensembles of classifiers for predicting HIV protease cleavage sites in proteins. Amino Acids 2009, 36: 409–416. 10.1007/s00726-008-0076-z
Article
CAS
PubMed
Google Scholar
Kyte J, Doolittle R: A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982, 157: 105–132. 10.1016/0022-2836(82)90515-0
Article
CAS
PubMed
Google Scholar
Shen HB, Chou KC: HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. Analytical Biochemistry 2008, 375: 388–390. 10.1016/j.ab.2008.01.012
Article
CAS
PubMed
Google Scholar
Riedmiller M, Braun H: A direct adaptive method for faster backpropagation learning: The Rprop algorithm. Proceedings of the IEEE International Conference on Neural Networks 1993, 586–591. full_text
Chapter
Google Scholar
Borschbach M, Hauke S, Pyka M, Heider D: Opportunities and limitations of a principal component analysis optimized machine learning approach for the identification and classification of cancer involved proteins. Communications of the SIWN 2009, 6: 85–89.
Google Scholar
Heider D, Appelmann J, Bayro T, Dreckmann W, Held A, Winkler J, Barnekow A, Borschbach M: A computational approach for the identification of small GTPases based on preprocessed amino acid sequences. Technology in Cancer Research and Treatment 2009, 8(5):333–342.
Article
CAS
PubMed
Google Scholar
Nguyen D, Widrow B: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proceedings of Intl Joint Conf on Neural Networks 1990, 21–26. full_text
Google Scholar
Punta M, Rost B: Neural networks predict protein structure and function. Humana Press, Berlin, Germany 2008 chap. Artificial Neural Networks: Methods and Protocols;
R Development Core Team:R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2006. ISBN 3–900051–07–0 [http://www.R-project.org] ISBN 3-900051-07-0
Google Scholar
Cohen WW: Fast effective rule induction. In Proceedings of the 12th International Conference on Machine Learning Edited by: Prieditis A, Russell S. 1995, 115–123.
Google Scholar
Frank E, Witten IH: Generating accurate rule sets without global optimization. In Machine Learning: Proceedings of the Fifteenth International Conference Edited by: Shavlik J. 1998.
Google Scholar
Cawley GC: Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs. Proceedings of the IEEE World Congress on Computational Intelligence 2006.
Google Scholar
Fawcett T: An introduction to ROC analysis. Pattern Recognition Letters 2006, 27: 861–874. 10.1016/j.patrec.2005.10.010
Article
Google Scholar
Sing T, Sander O, Beerenwinkel N, Lengauer T: ROCR: visualizing classifier performance in R. Bioinformatics 2005, 21(20):3940–3941. 10.1093/bioinformatics/bti623
Article
CAS
PubMed
Google Scholar
Cole C, Barber JD, Barton GJ: The Jpred 3 secondary structure prediction server. Nucleic Acids Res 2008, 36: W197–201. 10.1093/nar/gkn238
Article
CAS
PubMed
PubMed Central
Google Scholar
Chou KC, Tomasselli AG, Reardon IM, Heinrikson RL: Predicting human immunodeficiency virus protease cleavage sites in proteins by a discriminant function method. Proteins 1996, 24: 51–72. 10.1002/(SICI)1097-0134(199601)24:1<51::AID-PROT4>3.0.CO;2-R
Article
CAS
PubMed
Google Scholar
Wilcoxon F: Individual comparisons by ranking methods. Biometrics 1945, 1: 80–83. 10.2307/3001968
Article
Google Scholar
Demsar J: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006, 7: 1–30.
Google Scholar
Zhou J, Chen CH, Aiken C: Human immunodeficiency virus type 1 resistance to the small molecule maturation inhibitor 3-O-(3',3'-dimethylsuccinyl)-betulinic acid is conferred by a variety of single amino acid substitutions at the CA-SP1 cleavage site in Gag. J Virol 2006, 80(24):12095–101. 10.1128/JVI.01626-06
Article
CAS
PubMed
PubMed Central
Google Scholar
Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14(9):755–63. 10.1093/bioinformatics/14.9.755
Article
CAS
PubMed
Google Scholar
Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM, Allaway GP, Freed EO, Wild CT: PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 2003, 100(23):13555–60. 10.1073/pnas.2234683100
Article
CAS
PubMed
PubMed Central
Google Scholar
Accola MA, Höglund S, Göttlinger HG: A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J Virol 1998, 72: 2072–2078.
CAS
PubMed
PubMed Central
Google Scholar
Morellet N, Druillennec S, Lenoir C, Bouaziz S, Roques B: Helical structure determined by NMR of the HIV-1 (345–392)Gag sequence, surrounding p2: Implications for particle assembly and RNA packaging. Protein Science 2004, 14: 375–386. 10.1110/ps.041087605
Article
Google Scholar
Worthylake DK, Wang H, Yoo S, Sundquist WI, Hill CP: Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution. Acta Crystallogr D Biol Crystallogr 1999, 55: 85–92. 10.1107/S0907444998007689
Article
CAS
PubMed
Google Scholar
Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SB, Wlodawer A: Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 1989, 246(4934):1149–52. 10.1126/science.2686029
Article
CAS
PubMed
Google Scholar
Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, Jensen GJ: Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 2007, 26(8):2218–26. 10.1038/sj.emboj.7601664
Article
CAS
PubMed
PubMed Central
Google Scholar
Verheyen J, Verhofstede C, Knops E, Vandekerckhove L, Fun A, Brunen D, Dauwe K, Wensing A, Pfister H, Kaiser R, Nijhuis M: High prevalence of bevirimat resistance mutations in protease inhibitor-resistant HIV isolates. AIDS 2009, in press.
Google Scholar