Zintzaras E, Ioannidis JP: Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays. Comput Biol Chem 2008, 32(1):38–46. 10.1016/j.compbiolchem.2007.09.003
Article
PubMed
Google Scholar
Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res 2007, (35 Database):D760–765. 10.1093/nar/gkl887
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207–210. 10.1093/nar/30.1.207
Article
CAS
PubMed
PubMed Central
Google Scholar
Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, et al.: ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 2003, 31(1):68–71. 10.1093/nar/gkg091
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM: Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 2002, 62(15):4427–4433.
CAS
PubMed
Google Scholar
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM: Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 2004, 101(25):9309–9314. 10.1073/pnas.0401994101
Article
CAS
PubMed
PubMed Central
Google Scholar
Smid M, Dorssers LC, Jenster G: Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. Bioinformatics 2003, 19(16):2065–2071. 10.1093/bioinformatics/btg282
Article
CAS
PubMed
Google Scholar
Pihur V, Datta S: RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics 2009, 10: 62. 10.1186/1471-2105-10-62
Article
PubMed
PubMed Central
Google Scholar
DeConde RP, Hawley S, Falcon S, Clegg N, Knudsen B, Etzioni R: Combining results of microarray experiments: a rank aggregation approach. Stat Appl Genet Mol Biol 2006, 5: Article15.
PubMed
Google Scholar
Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006, 22(22):2825–2827. 10.1093/bioinformatics/btl476
Article
CAS
PubMed
Google Scholar
Ramasamy A, Mondry A, Holmes CC, Altman DG: Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 2008, 5(9):e184. 10.1371/journal.pmed.0050184
Article
PubMed
PubMed Central
Google Scholar
Choi JK, Yu U, Kim S, Yoo OJ: Combining multiple microarray studies and modeling interstudy variation. Bioinformatics 2003, 19(Suppl 1):i84–90. 10.1093/bioinformatics/btg1010
Article
PubMed
Google Scholar
Choi JK, Choi JY, Kim DG, Choi DW, Kim BY, Lee KH, Yeom YI, Yoo HS, Yoo OJ, Kim S: Integrative analysis of multiple gene expression profiles applied to liver cancer study. FEBS Lett 2004, 565(1–3):93–100. 10.1016/j.febslet.2004.03.081
Article
CAS
PubMed
Google Scholar
Warnat P, Eils R, Brors B: Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics 2005, 6: 265. 10.1186/1471-2105-6-265
Article
PubMed
PubMed Central
Google Scholar
Hu PGC, Beyene J: Statistical methods for meta-analysis of microarray data: A comparative study. Inf Syst Front 2006, 8: 9–20. 10.1007/s10796-005-6099-z
Article
Google Scholar
Xu L, Tan AC, Winslow RL, Geman D: Merging microarray data from separate breast cancer studies provides a robust prognostic test. BMC Bioinformatics 2008, 9: 125. 10.1186/1471-2105-9-125
Article
PubMed
PubMed Central
Google Scholar
Ertel A, Tozeren A: Human and mouse switch-like genes share common transcriptional regulatory mechanisms for bimodality. BMC Genomics 2008, 9: 628. 10.1186/1471-2164-9-628
Article
PubMed
PubMed Central
Google Scholar
Ertel A, Tozeren A: Switch-like genes populate cell communication pathways and are enriched for extracellular proteins. BMC Genomics 2008, 9: 3. 10.1186/1471-2164-9-3
Article
PubMed
PubMed Central
Google Scholar
Gormley M, Tozeren A: Expression profiles of switch-like genes accurately classify tissue and infectious disease phenotypes in model-based classification. BMC Bioinformatics 2008, 9: 486. 10.1186/1471-2105-9-486
Article
PubMed
PubMed Central
Google Scholar
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001, 98(9):5116–5121. 10.1073/pnas.091062498
Article
CAS
PubMed
PubMed Central
Google Scholar
Ertel A, Verghese A, Byers SW, Ochs M, Tozeren A: Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol Cancer 2006, 5(1):55. 10.1186/1476-4598-5-55
Article
PubMed
PubMed Central
Google Scholar
Sanga S, Broom BM, Cristini V, Edgerton ME: Gene expression meta-analysis supports existence of molecular apocrine breast cancer with a role for androgen receptor and implies interactions with ErbB family. BMC Med Genomics 2009, 2: 59. 10.1186/1755-8794-2-59
Article
PubMed
PubMed Central
Google Scholar
Gorlov IP, Byun J, Gorlova OY, Aparicio AM, Efstathiou E, Logothetis CJ: Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data. BMC Med Genomics 2009, 2: 48. 10.1186/1755-8794-2-48
Article
PubMed
PubMed Central
Google Scholar
Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, Desmedt C, Ignatiadis M, Sengstag T, Schutz F, et al.: Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 2008, 10(4):R65. 10.1186/bcr2124
Article
PubMed
PubMed Central
Google Scholar
Xu L, Geman D, Winslow RL: Large-scale integration of cancer microarray data identifies a robust common cancer signature. BMC Bioinformatics 2007, 8: 275. 10.1186/1471-2105-8-275
Article
PubMed
PubMed Central
Google Scholar
Hong Y, Ho KS, Eu KW, Cheah PY: A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clin Cancer Res 2007, 13(4):1107–1114. 10.1158/1078-0432.CCR-06-1633
Article
CAS
PubMed
Google Scholar
Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck AJ, et al.: Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 2005, 11(16):5730–5739. 10.1158/1078-0432.CCR-04-2225
Article
CAS
PubMed
Google Scholar
Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH, et al.: Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics 2007, 8: 140. 10.1186/1471-2164-8-140
Article
CAS
PubMed
PubMed Central
Google Scholar
Galamb O, Spisak S, Sipos F, Toth K, Solymosi N, Wichmann B, Krenacs T, Valcz G, Tulassay Z, Molnar B: Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor. Br J Cancer 2010, 102(4):765–773. 10.1038/sj.bjc.6605515
Article
CAS
PubMed
PubMed Central
Google Scholar
Yap YL, Lam DC, Luc G, Zhang XW, Hernandez D, Gras R, Wang E, Chiu SW, Chung LP, Lam WK, et al.: Conserved transcription factor binding sites of cancer markers derived from primary lung adenocarcinoma microarrays. Nucleic Acids Res 2005, 33(1):409–421. 10.1093/nar/gki188
Article
CAS
PubMed
PubMed Central
Google Scholar
Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, et al.: Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer 2008, 47(9):755–765. 10.1002/gcc.20577
Article
CAS
PubMed
Google Scholar
Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44–57. 10.1038/nprot.2008.211
Article
PubMed
Google Scholar
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4(5):P3. 10.1186/gb-2003-4-5-p3
Article
PubMed
Google Scholar
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006, (34 Database):D354–357. 10.1093/nar/gkj102
Google Scholar
Park MT, Lee SJ: Cell cycle and cancer. J Biochem Mol Biol 2003, 36(1):60–65.
Article
CAS
PubMed
Google Scholar
Jarvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, Kallioniemi OP, Monni O: Are data from different gene expression microarray platforms comparable? Genomics 2004, 83(6):1164–1168. 10.1016/j.ygeno.2004.01.004
Article
CAS
PubMed
Google Scholar
Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS: Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 2002, 18(3):405–412. 10.1093/bioinformatics/18.3.405
Article
CAS
PubMed
Google Scholar
Nadon R, Shoemaker J: Statistical issues with microarrays: processing and analysis. Trends Genet 2002, 18(5):265–271. 10.1016/S0168-9525(02)02665-3
Article
CAS
PubMed
Google Scholar
Dyrskjot L, Kruhoffer M, Thykjaer T, Marcussen N, Jensen JL, Moller K, Orntoft TF: Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res 2004, 64(11):4040–4048. 10.1158/0008-5472.CAN-03-3620
Article
CAS
PubMed
Google Scholar
Corvol JC, Pelletier D, Henry RG, Caillier SJ, Wang J, Pappas D, Casazza S, Okuda DT, Hauser SL, Oksenberg JR, et al.: Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event. Proc Natl Acad Sci USA 2008, 105(33):11839–11844. 10.1073/pnas.0805065105
Article
CAS
PubMed
PubMed Central
Google Scholar
Falt S, Merup M, Gahrton G, Lambert B, Wennborg A: Identification of progression markers in B-CLL by gene expression profiling. Exp Hematol 2005, 33(8):883–893. 10.1016/j.exphem.2005.05.007
Article
PubMed
Google Scholar
Gormley M, Dampier W, Ertel A, Karacali B, Tozeren A: Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets. BMC Bioinformatics 2007, 8: 415. 10.1186/1471-2105-8-415
Article
PubMed
PubMed Central
Google Scholar
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et al.: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006, 9(3):157–173. 10.1016/j.ccr.2006.02.019
Article
CAS
PubMed
Google Scholar
Groene J, Mansmann U, Meister R, Staub E, Roepcke S, Heinze M, Klaman I, Brummendorf T, Hermann K, Loddenkemper C, et al.: Transcriptional census of 36 microdissected colorectal cancers yields a gene signature to distinguish UICC II and III. Int J Cancer 2006, 119(8):1829–1836. 10.1002/ijc.22027
Article
CAS
PubMed
Google Scholar
Lin YH, Friederichs J, Black MA, Mages J, Rosenberg R, Guilford PJ, Phillips V, Thompson-Fawcett M, Kasabov N, Toro T, et al.: Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. Clin Cancer Res 2007, 13(2 Pt 1):498–507. 10.1158/1078-0432.CCR-05-2734
Article
CAS
PubMed
Google Scholar
Turkheimer FE, Roncaroli F, Hennuy B, Herens C, Nguyen M, Martin D, Evrard A, Bours V, Boniver J, Deprez M: Chromosomal patterns of gene expression from microarray data: methodology, validation and clinical relevance in gliomas. BMC Bioinformatics 2006, 7: 526. 10.1186/1471-2105-7-526
Article
PubMed
PubMed Central
Google Scholar
Marty B, Maire V, Gravier E, Rigaill G, Vincent-Salomon A, Kappler M, Lebigot I, Djelti F, Tourdes A, Gestraud P, et al.: Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Res 2008, 10(6):R101. 10.1186/bcr2204
Article
PubMed
PubMed Central
Google Scholar
Kim SY, Volsky DJ: PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 2005, 6: 144. 10.1186/1471-2105-6-144
Article
PubMed
PubMed Central
Google Scholar
Boorsma A, Foat BC, Vis D, Klis F, Bussemaker HJ: T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Res 2005, (33 Web Server):W592–595. 10.1093/nar/gki484
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102(43):15545–15550. 10.1073/pnas.0506580102
Article
CAS
PubMed
PubMed Central
Google Scholar
Breitling R, Armengaud P, Amtmann A, Herzyk P: Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 2004, 573(1–3):83–92. 10.1016/j.febslet.2004.07.055
Article
CAS
PubMed
Google Scholar
Dai MH, Wang PL, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, et al.: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005., 33(20): 10.1093/nar/gni179
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249–264. 10.1093/biostatistics/4.2.249
Article
PubMed
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing V, Austria.2008. [http://www.R-project.org] ISBN 3-900051-07-0
Google Scholar
Tibshirani RCG, Hastie T, Narasimhan B: samr: SAM: Significance Analysis of Microarrays. R package version 1.26.[http://www-stat.stanford.edu/~tibs/SAM]
Katz S, Irizarry RA, Lin X, Tripputi M, Porter MW: A summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database. BMC Bioinformatics 2006, 7: 464. 10.1186/1471-2105-7-464
Article
PubMed
PubMed Central
Google Scholar
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31(4):e15. 10.1093/nar/gng015
Article
PubMed
PubMed Central
Google Scholar