Skip to main content
Figure 1 | BMC Bioinformatics

Figure 1

From: Knowledge-based matrix factorization temporally resolves the cellular responses to IL-6 stimulation

Figure 1

GraDe: Graph-decorrelation algorithm. In cells, various biological processes are taking place simultaneously. Each of these processes has its own characteristic gene expression pattern, but different processes may overlap. A cell's total gene expression is then the sum of the expression patterns of all active processes, weighted by their current activation level. The GraDe algorithm combines a matrix factorization approach with prior knowledge in form of an underlying regulatory network. The input of GraDe is the transcriptional expression data, where observations can be different conditions or a time points, and the underlying regulatory network (prior knowledge). GraDe decomposes the observed expression data into the underlying sources S and their mixing coefficients A. Analyzing time-course microarray data, we interpret these sources as the biological processes and the mixing coefficients as their time-dependent activities. Observations indicate their expression behavior either in the different conditions or time-points and activity their activation strength. We further filter process-related genes by taking only the genes with the strongest contribution in each process. Finally, we test for enrichment of cellular processes (GO) and biological pathways (KEGG).

Back to article page