Kolodny R, Koehl P, Levitt M: Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. J Mol Biol 2005, 346(4):1173–88. 10.1016/j.jmb.2004.12.032
Article
PubMed Central
CAS
PubMed
Google Scholar
Lindqvist Y, Schneider G: Circular permutations of natural protein sequences: structural evidence. Curr Opin Struct Biol 1997, 7(3):422–7. 10.1016/S0959-440X(97)80061-9
Article
CAS
PubMed
Google Scholar
Grishin NV: Fold change in evolution of protein structures. J Struct Biol 2001, 134(2–3):167–85. 10.1006/jsbi.2001.4335
Article
CAS
PubMed
Google Scholar
Shih ES, Hwang MJ: Alternative alignments from comparison of protein structures. Proteins 2004, 56(3):519–27. 10.1002/prot.20124
Article
CAS
PubMed
Google Scholar
Abyzov A, Ilyin VA: A comprehensive analysis of non-sequential alignments between all protein structures. BMC Struct Biol 2007, 7: 78. 10.1186/1472-6807-7-78
Article
PubMed Central
PubMed
Google Scholar
Andreeva A, Prlic A, Hubbard TJ, Murzin AG: SISYPHUS-structural alignments for proteins with non-trivial relationships. Nucleic Acids Res 2007, 35(Database issue):D253–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mayr G, Domingues FS, Lackner P: Comparative analysis of protein structure alignments. BMC Struct Biol 2007, 7: 50. 10.1186/1472-6807-7-50
Article
PubMed Central
PubMed
Google Scholar
Orengo CA, Taylor WR: SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol 1996, 266: 617–35.
Article
CAS
PubMed
Google Scholar
Holm L, Sander C: Protein structure comparison by alignment of distance matrices. J Mol Biol 1993, 233: 123–38. 10.1006/jmbi.1993.1489
Article
CAS
PubMed
Google Scholar
Wohlers I, Domingues FS, Klau GW: Towards optimal alignment of protein structure distance matrices. Bioinformatics 2010, 26(18):2273–80. 10.1093/bioinformatics/btq420
Article
CAS
PubMed
Google Scholar
Shindyalov IN, Bourne PE: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 1998, 11(9):739–47. 10.1093/protein/11.9.739
Article
CAS
PubMed
Google Scholar
Madej T, Gibrat JF, Bryant SH: Threading a database of protein cores. Proteins 1995, 23(3):356–69. 10.1002/prot.340230309
Article
CAS
PubMed
Google Scholar
Alexandrov N: SARFing the PDB. Protein Engineering 1996, 9(9):727. 10.1093/protein/9.9.727
Article
CAS
PubMed
Google Scholar
Kawabata T, Nishikawa K: Protein structure comparison using the markov transition model of evolution. Proteins 2000, 41: 108–22. 10.1002/1097-0134(20001001)41:1<108::AID-PROT130>3.0.CO;2-S
Article
CAS
PubMed
Google Scholar
Guerler A, Knapp EW: Novel protein folds and their nonsequential structural analogs. Protein Sci 2008, 17(8):1374–82. 10.1110/ps.035469.108
Article
PubMed Central
CAS
PubMed
Google Scholar
Bachar O, Fischer D, Nussinov R, Wolfson H: A computer vision based technique for 3-D sequence-independent structural comparison of proteins. Protein Eng 1993, 6(3):279–88. 10.1093/protein/6.3.279
Article
CAS
PubMed
Google Scholar
Pennec X, Ayache N: A geometric algorithm to find small but highly similar 3D substructures in proteins. Bioinformatics 1998, 14(6):516–22. 10.1093/bioinformatics/14.6.516
Article
CAS
PubMed
Google Scholar
Bhattacharya S, Bhattacharyya C, Chandra NR: Comparison of protein structures by growing neighborhood alignments. BMC Bioinformatics 2007, 8: 77. 10.1186/1471-2105-8-77
Article
PubMed Central
PubMed
Google Scholar
Jung J, Lee B: Protein structure alignment using environmental profiles. Protein Eng 2000, 13(8):535–43. 10.1093/protein/13.8.535
Article
CAS
PubMed
Google Scholar
Ilyin VA, Abyzov A, Leslin CM: Structural alignment of proteins by a novel TOPOFIT method, as a superimposition of common volumes at a topomax point. Protein Sci 2004, 13(7):1865–74. 10.1110/ps.04672604
Article
PubMed Central
CAS
PubMed
Google Scholar
Mavridis L, Ritchie DW: 3d-blast: 3d protein structure alignment, comparison, and classification using spherical polar fourier correlations. Pac Symp Biocomput 2010, 281–92.
Google Scholar
Ye Y, Godzik A: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 2003, 19(Suppl 2):ii246–55. 10.1093/bioinformatics/btg1086
Article
PubMed
Google Scholar
Shatsky M, Nussinov R, Wolfson HJ: FlexProt: alignment of flexible protein structures without a predefinition of hinge regions. J Comput Biol 2004, 11: 83–106. 10.1089/106652704773416902
Article
CAS
PubMed
Google Scholar
Rocha J, Segura J, Wilson RC, Dasgupta S: Flexible structural protein alignment by a sequence of local transformations. Bioinformatics 2009, 25(13):1625–31. 10.1093/bioinformatics/btp296
Article
PubMed Central
CAS
PubMed
Google Scholar
Salem S, Zaki M, Bystroff C: FlexSnap: Flexible Non-sequential Protein Structure Alignment. Algorithms for Molecular Biology 2010, 5: 12. 10.1186/1748-7188-5-12
Article
PubMed Central
PubMed
Google Scholar
Hasegawa H, Holm L: Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol 2009, 19(3):341–8. 10.1016/j.sbi.2009.04.003
Article
CAS
PubMed
Google Scholar
Hvidsten TR, Kryshtafovych A, Komorowski J, Fidelis K: A novel approach to fold recognition using sequence-derived properties from sets of structurally similar local fragments of proteins. Bioinformatics 2003, 19(Suppl 2):ii81–91. 10.1093/bioinformatics/btg1064
Article
PubMed
Google Scholar
Hvidsten TR, Kryshtafovych A, Fidelis K: Local descriptors of protein structure: a systematic analysis of the sequence-structure relationship in proteins using short- and long-range interactions. Proteins 2009, 75(4):870–84. 10.1002/prot.22296
Article
CAS
PubMed
Google Scholar
Kryshtafovych A, Milostan M, Szajkowski L, Daniluk P, Fidelis K: CASP6 data processing and automatic evaluation at the protein structure prediction center. Proteins 2005, 61(Suppl 7):19–23.
Article
CAS
PubMed
Google Scholar
Kryshtafovych A, Prlic A, Dmytriv Z, Daniluk P, Milostan M, Eyrich V, Hubbard T, Fidelis K: New tools and expanded data analysis capabilities at the Protein Structure Prediction Center. Proteins 2007, 69(Suppl 8):19–26.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kabsch W: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 1976, 32(5):922–923. 10.1107/S0567739476001873
Article
Google Scholar
Kabsch W: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 1978, 34(5):827–828. 10.1107/S0567739478001680
Article
Google Scholar
Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM: CATH-a hierarchic classification of protein domain structures. Structure 1997, 5(8):1093–108. 10.1016/S0969-2126(97)00260-8
Article
CAS
PubMed
Google Scholar
Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 1995, 247(4):536–40.
CAS
PubMed
Google Scholar
Zemla A: LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res 2003, 31(13):3370–4. 10.1093/nar/gkg571
Article
PubMed Central
CAS
PubMed
Google Scholar
Holm L, Park J: DaliLite workbench for protein structure comparison. Bioinformatics 2000, 16(6):566–7. 10.1093/bioinformatics/16.6.566
Article
CAS
PubMed
Google Scholar
Ponting CP, Russell RB: Swaposins: circular permutations within genes encoding saposin homologues. Trends Biochem Sci 1995, 20(5):179–80. 10.1016/S0968-0004(00)89003-9
Article
CAS
PubMed
Google Scholar
Liepinsh E, Andersson M, Ruysschaert JM, Otting G: Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Biol 1997, 4(10):793–5. 10.1038/nsb1097-793
Article
CAS
PubMed
Google Scholar
Kervinen J, Tobin GJ, Costa J, Waugh DS, Wlodawer A, Zdanov A: Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J 1999, 18(14):3947–55. 10.1093/emboj/18.14.3947
Article
PubMed Central
CAS
PubMed
Google Scholar
Niemann HH, Knetsch ML, Scherer A, Manstein DJ, Kull FJ: Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J 2001, 20(21):5813–21. 10.1093/emboj/20.21.5813
Article
PubMed Central
CAS
PubMed
Google Scholar
Shin DH, Lou Y, Jancarik J, Yokota H, Kim R, Kim SH: Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain. Proc Natl Acad Sci USA 2004, 101(36):13198–203. 10.1073/pnas.0405202101
Article
PubMed Central
CAS
PubMed
Google Scholar
Anand B, Verma SK, Prakash B: Structural stabilization of GTP-binding domains in circularly permuted GTPases: implications for RNA binding. Nucleic Acids Res 2006, 34(8):2196–205. 10.1093/nar/gkl178
Article
PubMed Central
CAS
PubMed
Google Scholar
Bewley CA, Gustafson KR, Boyd MR, Covell DG, Bax A, Clore GM, Gronenborn AM: Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat Struct Biol 1998, 5(7):571–8. 10.1038/828
Article
CAS
PubMed
Google Scholar
Yang F, Bewley CA, Louis JM, Gustafson KR, Boyd MR, Gronenborn AM, Clore GM, Wlodawer A: Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping. J Mol Biol 1999, 288(3):403–12. 10.1006/jmbi.1999.2693
Article
CAS
PubMed
Google Scholar
Barrientos LG, Louis JM, Botos I, Mori T, Han Z, O'Keefe BR, Boyd MR, Wlodawer A, Gronenborn AM: The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR structures. Structure 2002, 10(5):673–86. 10.1016/S0969-2126(02)00758-X
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH: CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 2005, 33(Database issue):D192–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim C, Lee B: Accuracy of structure-based sequence alignment of automatic methods. BMC Bioinformatics 2007, 8: 355. 10.1186/1471-2105-8-355
Article
PubMed Central
PubMed
Google Scholar
Pirovano W, Feenstra KA, Heringa J: The meaning of alignment: lessons from structural diversity. BMC Bioinformatics 2008, 9: 556. 10.1186/1471-2105-9-556
Article
PubMed Central
PubMed
Google Scholar
Liu ZP, Wu LY, Wang Y, Zhang XS, Chen L: Bridging protein local structures and protein functions. Amino Acids 2008, 35(3):627–50. 10.1007/s00726-008-0088-8
Article
CAS
PubMed
Google Scholar
Redfern OC, Dessailly B, Orengo CA: Exploring the structure and function paradigm. Curr Opin Struct Biol 2008, 18(3):394–402. 10.1016/j.sbi.2008.05.007
Article
PubMed Central
CAS
PubMed
Google Scholar
Kosloff M, Kolodny R: Sequence-similar, structure-dissimilar protein pairs in the PDB. Proteins 2008, 71(2):891–902. 10.1002/prot.21770
Article
PubMed Central
CAS
PubMed
Google Scholar
Björkholm P, Daniluk P, Kryshtafovych A, Fidelis K, Andersson R, Hvidsten TR: Using multi-data hidden Markov models trained on local neighborhoods of protein structure to predict residue-residue contacts. Bioinformatics 2009, 25(10):1264–70. 10.1093/bioinformatics/btp149
Article
PubMed Central
PubMed
Google Scholar
Drabikowski M, Nowakowski S, Tiuryn J: Library of local descriptors models the core of proteins accurately. Proteins 2007, 69(3):499–510. 10.1002/prot.21393
Article
CAS
PubMed
Google Scholar
Strömbergsson H, Kryshtafovych A, Prusis P, Fidelis K, Wikberg JE, Komorowski J, Hvidsten TR: Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures. Proteins 2006, 65(3):568–79. 10.1002/prot.21163
Article
PubMed
Google Scholar
Strömbergsson H, Daniluk P, Kryshtafovych A, Fidelis K, Wikberg JE, Kleywegt GJ, Hvidsten TR: Interaction Model Based on Local Protein Substructures Generalizes to the Entire Structural Enzyme-Ligand Space. J Chem Inf Model 2008, 48(11):2278–88. 10.1021/ci800200e
Article
PubMed
Google Scholar
Pawlak Z: Rough sets: theoretical aspects of reasoning about data Theory and decision library. Series D, System theory, knowledge engineering, and problem solving. Volume 9. Dordrecht; Boston: Kluwer Academic Publishers; 1991.
Book
Google Scholar
Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E: Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21(6):1087. 10.1063/1.1699114
Article
CAS
Google Scholar
Swendsen RH, Wang JS: Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 1986, 57(21):2607–2609. 10.1103/PhysRevLett.57.2607
Article
PubMed
Google Scholar