Tama F: Normal mode analysis with simplified models to investigate the global dynamics Of biological systems. Protein Pept Lett. 2003, 10: 119-132. 10.2174/0929866033479077.
Article
CAS
PubMed
Google Scholar
Go N, Noguti T, Nishikawa T: Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci U S A. 1983, 80: 3696-3700. 10.1073/pnas.80.12.3696.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M: CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983, 4: 187-217. 10.1002/jcc.540040211.
Article
CAS
Google Scholar
Brooks B, Karplus M: Normal modes for specific motions of macromolecules: Application to the hinge-bending mode of lysozyme. Proc Natl Acad Sci U S A. 1985, 82: 4995-4999. 10.1073/pnas.82.15.4995.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mouawad L, Perahia D: Diagonalization in a mixed basis: a method to compute low-frequency normal modes for large macromolecules. Biopolymers. 1993, 33: 599-611. 10.1002/bip.360330409.
Article
CAS
Google Scholar
Durand P, Trinquier G, Sanejouand YH: A new approach for determining low-frequency normal modes in macromolecules. Bioploymers. 1994, 34: 759-771. 10.1002/bip.360340608.
Article
CAS
Google Scholar
Marques O, Sanejouand YH: Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins: Struct Funct Genet. 1995, 23: 557-560. 10.1002/prot.340230410.
Article
CAS
Google Scholar
Tama F, Gadea FX, Marques O, Sanejouand YH: Building-block approach for determining low-frequency normal modes of macromolecules. Proteins: Struct Funct Genet. 2000, 41: 1-7.
Article
CAS
Google Scholar
Li G, Cui Q: A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca2+-ATPase. Biophys J. 2002, 83: 2457-2474. 10.1016/S0006-3495(02)75257-0.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tirion KM: Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett. 1996, 77: 1905-1908. 10.1103/PhysRevLett.77.1905.
Article
CAS
PubMed
Google Scholar
Bahar I, Atilgan AR, Erman B: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 1997, 2: 173-181. 10.1016/S1359-0278(97)00024-2.
Article
CAS
PubMed
Google Scholar
Hinsen K: Analysis of domain motions by approximate normal mode calculations. Proteins: Struct Funct Genet. 1998, 33: 417-429. 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8.
Article
CAS
Google Scholar
Hinsen K, Thomas A, Field MJ: Analysis of domain motion in large proteins. Proteins: Struct Funct Genet. 1999, 34: 369-382. 10.1002/(SICI)1097-0134(19990215)34:3<369::AID-PROT9>3.0.CO;2-F.
Article
CAS
Google Scholar
Tama F: Conformational change of proteins arising from normal mode calculations. Protein Eng. 2001, 14: 1-6. 10.1093/protein/14.1.1.
Article
CAS
PubMed
Google Scholar
Delarue M, Sanejouand YH: Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol. 2002, 320: 1011-1024. 10.1016/S0022-2836(02)00562-4.
Article
CAS
PubMed
Google Scholar
Tama F, Valle M, Frank J, Brooks III CL: Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci U S A. 2003, 100: 9319-9323. 10.1073/pnas.1632476100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krebs WG, Alexandrov V, Wilson CA, Echols N, Yu H, Gerstein M: Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins: Struct Funct Genet. 2002, 48: 682-695. 10.1002/prot.10168.
Article
CAS
Google Scholar
Valadié H, Lacapčre JJ, Sanejouand YH, Etchebest C: Dynamical properties of the MscL of escherichia coli: a normal mode analysis. J Mol Biol. 2003, 332: 657-674. 10.1016/S0022-2836(03)00851-9.
Article
PubMed
Google Scholar
Kim MK, Jernigan RL, Chirikjian GS: An elastic network model of HK97 capsid maturation. J Struct Biol. 2003, 143: 107-117. 10.1016/S1047-8477(03)00126-6.
Article
CAS
PubMed
Google Scholar
Reuter N, Hinsen K, Lacapère JJ: Transconformations of the SERCA1 Ca-ATPase: a normal mode study. Biophys J. 2003, 85: 2186-2197. 10.1016/S0006-3495(03)74644-X.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thomas A, Hinsen K, Field MJ, Perahia D: Tertiary and quaternary conformational changes in aspartate transcarbamylase: a normal mode study. Proteins: Struct Funct Genet. 1999, 34: 96-112. 10.1002/(SICI)1097-0134(19990101)34:1<96::AID-PROT8>3.0.CO;2-0.
Article
CAS
Google Scholar
Tirion M, ben Avraham D, Lorenz M, Holmes K: Normal modes as refinement parameters for the F-actin model. Biophys J. 1995, 68: 5-12. 10.1016/S0006-3495(95)80156-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gofman Y, Shats S, Attali B, Haliloglu T, Ben-Tal N: How does KCNE1 regulate the Kv7.1 potassium channel? Model-structure, mutations, and dynamics of the Kv7.1-KCNE1 complex. Structure. 2012, 20: 1343-1352. 10.1016/j.str.2012.05.016.
Article
CAS
PubMed
Google Scholar
Liu M, Wang S, Sun T, Su J, Zhang Y, Yue J, Sun Z: Insight into the structure, dynamics and the unfolding property of amylosucrases: implications of rational engineering on thermostability. PLoS ONE. 2012, 7: e40441-10.1371/journal.pone.0040441.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kidera A, Gō N: Normal mode refinement: crystallographic refinement of protein dynamic structure I. Theory and test by simulated diffraction data. J Mol Biol. 1992, 225: 457-475. 10.1016/0022-2836(92)90932-A.
Article
CAS
PubMed
Google Scholar
Diamond R: On the use of normal modes in thermal parameter refinement: theory and application to the bovine pancreatic trypsin inhibitor. Acta Crystallogr A. 1990, 46: 425-435. 10.1107/S0108767390002082.
Article
PubMed
Google Scholar
Miller WW, Agard DA: Enzyme specificity under dynamic control: a normal mode analysis of α-lytic protease. J Mol Biol. 1999, 286: 267-278. 10.1006/jmbi.1998.2445.
Article
CAS
PubMed
Google Scholar
Faure P, Micu A, Pérahia D, Doucet J, Smith J, Benoit J: Correlated intramolecular motions and diffuse X-ray scattering in lysozyme. Nat Struct Mol Biol. 1994, 1: 124-128. 10.1038/nsb0294-124.
Article
CAS
Google Scholar
Wang Z, Schröder GF: Real-space refinement with DireX: from global fitting to side-chain improvements. Biopolymers. 2012, 97: 687-697. 10.1002/bip.22046.
Article
CAS
PubMed
Google Scholar
Gaillard T, Martin E, San Sebastian E, Cossío FP, Lopez X, Dejaegere A, Stote RH: Comparative normal mode analysis of LFA-1 Integrin I-domains. J Mol Biol. 2007, 374: 231-249. 10.1016/j.jmb.2007.07.006.
Article
CAS
PubMed
Google Scholar
Nojima H, Takeda-Shitaka M, Kanou K, Kamiya K, Umeyama H: Dynamic interaction among the platform domain and two MembraneProximal immunoglobulin-like domains of class I major histocompatibility complex: normal mode analysis. Chem Pharm Bull. 2008, 56: 635-641. 10.1248/cpb.56.635.
Article
CAS
PubMed
Google Scholar
Kurihara Y, Watanabe T, Nojima H, Takeda-Shitaka M, Sumikawa H, Kamiya K, Umeyama H: Dynamic character of human growth hormone and its receptor: normal mode analysis. Chem Pharm Bull. 2003, 51: 754-758. 10.1248/cpb.51.754.
Article
CAS
PubMed
Google Scholar
Rodgers TL, Burnell D, Wilson MR, Pohl E, Cann M, Townsend PD, McLeish TCB, Toncrova H: Modelling allosteric signalling in protein homodimers. Eur Biophys J Biophys Lett. 2011, 40: 121-
Google Scholar
Mouawad L, Perahia D: Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, Quaternary R-like intermediate structures. J Mol Biol. 1996, 258: 393-410. 10.1006/jmbi.1996.0257.
Article
CAS
PubMed
Google Scholar
Tirion MM, ben Avraham D: Normal mode analysis of G-actin. J Mol Biol. 1993, 230: 186-195. 10.1006/jmbi.1993.1135.
Article
CAS
PubMed
Google Scholar
Jackson JE: A User’s Guide to Principal Components. 1991, New York: John Wiley & Sons, Inc.
Book
Google Scholar
Hayward S, Kitao A, Gō N: Harmonic and Anharmonic aspects in the dynamics of BPTI: a normal mode analysis and principal component analysis. Protein Sci. 1994, 3: 936-943.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ramanathan A, Agarwal PK: Computational identification of slow conformational fluctuations in proteins. J Phys Chem B. 2009, 113: 16669-16680. 10.1021/jp9077213.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gorfe AA, Grant BJ, McCammon JA: Mapping the nucleotide and Isoform-dependent structural and dynamical features of Ras proteins. Structure. 2008, 16: 885-896. 10.1016/j.str.2008.03.009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eyal E, Yang LW, Bahar I: Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics. 2006, 22: 2619-2627. 10.1093/bioinformatics/btl448.
Article
CAS
PubMed
Google Scholar
Camps J, Carrillo O, Emperador A, Orellana L, Hospital A, Rueda M, Cicin-Sain D, D’Abramo M, Gelpí JL, Orozco M: FlexServ: an integrated tool for the analysis of protein flexibility. Bioinformatics. 2009, 25: 1709-1710. 10.1093/bioinformatics/btp304.
Article
CAS
PubMed
Google Scholar
Hinsen K: The molecular modeling toolkit: a new approach to molecular simulations. J Comput Chem. 2000, 21: 79-85. 10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B.
Article
CAS
Google Scholar
Bakan A, Meireles LM, Bahar I: ProDy: protein dynamics inferred from theory and experiments. Bioinformatics. 2011, 27: 1575-1577. 10.1093/bioinformatics/btr168.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hess B, Kutzner C, van der Spoel D, Lindahl E: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008, 4: 435-447. 10.1021/ct700301q.
Article
CAS
PubMed
Google Scholar
Case D, Darden T, Cheatham III T, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvai I, Wong K, Paesani F, Vanicek J, Liu J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe D, et al: AMBER 11. San Francisco, US: University of California; 2010
Todorov I, Smith W, Trachenko K, Dove M: DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006, 16: 1911-1918. 10.1039/b517931a.
Article
CAS
Google Scholar
Smith W, Todorov IT: A short description of DL POLY. Mol Simul. 2006, 32: 935-943. 10.1080/08927020600939830.
Article
CAS
Google Scholar
Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG: Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature. 2011, 474: 521-525. 10.1038/nature10136.
Article
PubMed Central
CAS
PubMed
Google Scholar
Frishman D, Argos P: Knowledge-based secondary structure assignment. Proteins: Struct Funct Genet. 1995, 23: 566-579. 10.1002/prot.340230412.
Article
CAS
Google Scholar
Doruker P, Jernigan RL, Bahar I: Dynamics of large proteins through hierarchical levels of coarse-grained structures. J Comput Chem. 2002, 23: 119-127. 10.1002/jcc.1160.
Article
CAS
PubMed
Google Scholar
Brink J, Ludtke SJ, Kong Y, Wakil SJ, Ma J, Chiu W: Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis. Structure. 2004, 12: 185-191.
Article
CAS
PubMed
Google Scholar
Dykeman EC, Sankey OF: Normal mode analysis and applications in biological physics. J Phys Condensed Matter. 2010, 22: 423202-10.1088/0953-8984/22/42/423202.
Article
Google Scholar
Schlitter J: Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett. 1993, 215: 617-621. 10.1016/0009-2614(93)89366-P.
Article
CAS
Google Scholar
Brüschweiler R: Collective protein dynamics and nuclear spin relaxation. J Chem Phys. 1995, 102: 3396-3403. 10.1063/1.469213.
Article
Google Scholar
Pohl E, Holmes RK, Hol WG: (Motion of the DNA-binding domain with respect to the core of the diphtheria toxin repressor (DtxR) revealed in the crystal structures of apo- and holo-DtxR. J Biol Chem. 1998, 273: 22420-22427. 10.1074/jbc.273.35.22420.
Article
CAS
PubMed
Google Scholar
Russo S, Schweitzer JE, Polen T, Bott M, Pohl E: Crystal structure of the caseinolytic protease gene regulator, a transcriptional activator in actinomycetes. J Biol Chem. 2009, 284: 5208-5216.
Article
CAS
PubMed
Google Scholar
Ichiye T, Karplus M: Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991, 11: 205-217. 10.1002/prot.340110305.
Article
CAS
PubMed
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The protein data bank. Nucleic Acids Res. 2000, 28: 235-242. 10.1093/nar/28.1.235.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hinsen K: Structural flexibility in proteins: impact of the crystal environment. Bioinformatics. 2008, 24: 521-528. 10.1093/bioinformatics/btm625.
Article
CAS
PubMed
Google Scholar