Pinsky P, Zhu C: Building multi-marker algorithms for diesease prediction: the role of correlations among markers. Biomarker insights. 2011, 6: 83-93.
Article
PubMed Central
PubMed
Google Scholar
Vapnik V: The nature of statistical learning theory. 2000, New York: Springer
Book
Google Scholar
Breiman L, Friedman J, Stone C, Olshen R: Classification and regression trees. 1984, California: Wadsworth International Group
Google Scholar
Dudoit S, Fridlyand J, Speed TP: Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002, 97 (457): 77-87. 10.1198/016214502753479248.
Article
CAS
Google Scholar
Diaz-Uriarte R, Alvarez de AndresS: Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006, 7: 3-10.1186/1471-2105-7-3. [http://www.biomedcentral.com/1471-2105/7/3]
Article
PubMed Central
PubMed
Google Scholar
Pirooznia M, Yang J, Yang MQ, Deng Y: A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics. 2008, 9 (Suppl 1): S13-10.1186/1471-2164-9-S1-S13. [http://www.biomedcentral.com/1471-2164/9/S1/S13]
Article
PubMed Central
PubMed
Google Scholar
Caruana R, Niculescu-Mizil A: An empirical comparison of supervised learning algorithms. Proceedings of the 23rd international conference on Machine learning, ICML ’06. 2006, New York, NY, USA: ACM, 161-168. [http://doi.acm.org/10.1145/1143844.1143865]
Chapter
Google Scholar
Statnikov A, Wang L, Aliferis C: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics. 2008, 9 (1): 319-10.1186/1471-2105-9-319. [http://www.biomedcentral.com/1471-2105/9/319]
Article
PubMed Central
PubMed
Google Scholar
Caruana R, Karampatziakis N, Yessenalina A: An empirical evaluation of supervised learning in high dimensions. Proceedings of the 25th international conference on Machine learning, ICML ’08. 2008, New York, NY, USA: ACM, 96-103. [http://doi.acm.org/10.1145/1390156.1390169]
Chapter
Google Scholar
Breiman L: Bagging Predictors. Machine Learning. 1996, 24: 123-140.
Google Scholar
Derksen S, Keselman HJ: Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British J Mathematical Stat Psychology. 1992, 45 (2): 265-282. 10.1111/j.2044-8317.1992.tb00992.x. [http://dx.doi.org/10.1111/j.2044-8317.1992.tb00992.x]
Article
Google Scholar
Harrell FJ, Lee K, Mark D: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat med. 1996, 15: 361-387. 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4.
Article
PubMed
Google Scholar
Breiman L: Random Forests. Machine Learning. 2001, 45: 5-32. 10.1023/A:1010933404324.
Article
Google Scholar
Svetnik V, Liaw A, Tong C, Wang T: Application of Breiman’s Random Forest to Modeling Structure-Activity Relationships of Pharmaceutical Molecules. Multiple Classier Systems, Fifth International Workshop, MCS 2004, Proceedings, Cagliari, Italy. Lecture Notes in Computer Science. Edited by: Roli F, Kittler J, Windeatt T. 2004, Springer Berlin / Heidelberg, 334-343.
Google Scholar
Shi T, Horvath S: Unsupervised learning with random forest predictors. J Comput Graphical Stat. 2006, 15: 118-138. 10.1198/106186006X94072. [http://dx.doi.org/10.1198/106186006X94072]
Article
Google Scholar
McCullagh P, Nelder J: Generalized Linear Models. second edition, ISBN 13: 9780412317606. 1989, London: Chapman and Hall/CRC
Book
Google Scholar
Ho TK: The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Machine Intelligence. 1998, 20 (8): 832-844. 10.1109/34.709601. [http://dx.doi.org/10.1109/34.709601]
Article
Google Scholar
Prinzie A, den Poel DV: Random Forests for multiclass classification: Random MultiNomial Logit. Expert Syst Appl. 2008, 34 (3): 1721-1732. 10.1016/j.eswa.2007.01.029. [http://www.sciencedirect.com/science/article/pii/S0957417407000498]
Article
Google Scholar
Ahn H, Moon H, Fazzari MJ, Lim N, Chen JJ, Kodell RL: Classification by ensembles from random partitions of high-dimensional data. Comput Stat Data Anal. 2007, 51 (12): 6166-6179. 10.1016/j.csda.2006.12.043. [http://dx.doi.org/10.1016/j.csda.2006.12.043]
Article
Google Scholar
Moon H, Ahn H, Kodell RL, Baek S, Lin CJ, Chen JJ: Ensemble methods for classification of patients for personalized medicine with high-dimensional data. Artif Intelligence Med. 2007, 41 (3): 197-207. 10.1016/j.artmed.2007.07.003. [http://www.sciencedirect.com/science/article/pii/S0933365707000863]
Article
Google Scholar
Panov P, Džeroski S: Combining bagging and random subspaces to create better ensembles. Proceedings of the 7th international conference on Intelligent data analysis, IDA’07. 2007, Berlin, Heidelberg: Springer-Verlag, 118-129. [http://dl.acm.org/citation.cfm?id=1771622.1771637]
Google Scholar
Venables W, Ripley B: Modern Applied Statistics with S. fourth edition ISBN 0-387-95457-0. 2002, New York: Springer
Book
Google Scholar
Ripley B: Pattern Recognition and Neural Networks. ISBN 0 521 46086 7. 1996, UK: Cambridge University Press
Google Scholar
Dettling M, Bühlmann P: Supervised clustering of genes. Genome Biol. 2002, 3 (12): research0069.1-research0069.15. 10.1186/gb-2002-3-12-research0069. [http://genomebiology.com/2002/3/12/research/0069]
Article
Google Scholar
Chang C, Lin C: LIBSVM: a library for Support Vector Machines. [http://www.csie.ntu.edu.tw/~cjlin/libsvm]
Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA. 2002, 99 (10): 6567-6572. 10.1073/pnas.082099299.
Article
PubMed Central
CAS
PubMed
Google Scholar
Draper N, Smith H, Pownell E: Applied regression analysis. Volume 3. 1966, New York: Wiley
Google Scholar
Tibshirani R: Regression shrinkage and selection via the lasso. J R Stat Soc. Ser B (Methodological). 1996, 58: 267-288.
Google Scholar
Zou H, Hastie T: Regularization and variable selection via the elastic net. J R Stat Soc: Ser B (Statistical Methodology). 2005, 67 (2): 301-320. 10.1111/j.1467-9868.2005.00503.x.
Article
Google Scholar
Friedman J, Hastie T, Tibshirani R: Regularization paths for generalized linear models via coordinate descent. J stat software. 2010, 33: 1-
Article
Google Scholar
Simon N, Friedman JH, Hastie T, Tibshirani R: Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent. J Stat Software. 2011, 39 (5): 1-13. [http://www.jstatsoft.org/v39/i05]
Article
Google Scholar
Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003, 33: 49-54. 10.1038/ng1060. [http://dx.doi.org/10.1038/ng1060]
Article
CAS
PubMed
Google Scholar
Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, Mclaughlin ME, Kim JYH, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002, 415 (6870): 436-442. 10.1038/415436a. [http://dx.doi.org/10.1038/415436a]
Article
CAS
PubMed
Google Scholar
van’t Veer L, Dai H, van de Vijver M, He Y, Hart A, Mao M, Peterse H, van der kooy K, Marton M, Witteveen A, Schreiber G, Kerkhoven R, Roberts C, Linsley P, Bernards R, Friend S: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415: 530-536. 10.1038/415530a.
Article
Google Scholar
Alon U, Barkai N, Notterman DA, Gishdagger K, Ybarradagger S, Mackdagger D, Levine AJ: Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proc Natl Acad Sci USA. 1999, 96: 6745-50. 10.1073/pnas.96.12.6745.
Article
PubMed Central
CAS
PubMed
Google Scholar
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999, 286 (5439): 531-7. 10.1126/science.286.5439.531.
Article
CAS
PubMed
Google Scholar
Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000, 503-511.
Google Scholar
Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO: Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000, 24 (3): 227-235. 10.1038/73432.
Article
CAS
PubMed
Google Scholar
Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, 1 (2): 203-209. 10.1016/S1535-6108(02)00030-2. [http://view.ncbi.nlm.nih.gov/pubmed/12086878]
Article
CAS
PubMed
Google Scholar
Khan J, Wei JS, Ringnér M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 2001, 7 (6): 673-679. 10.1038/89044. [http://dx.doi.org/10.1038/89044]
Article
PubMed Central
CAS
PubMed
Google Scholar
Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN: Gene Expression-based Classification of Malignant Gliomas Correlates Better with Survival than Histological Classification. Cancer Res. 2003, 63 (7): 1602-1607. [http://cancerres.aacrjournals.org/content/63/7/1602.abstract]
CAS
PubMed
Google Scholar
Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002, 8: 68-74. 10.1038/nm0102-68. [http://dx.doi.org/10.1038/nm0102-68]
Article
CAS
PubMed
Google Scholar
Kuner R, Muley T, Meister M, Ruschhaupt M, Buness A, Xu EC, Schnabel P, Warth A, Poustka A, Sültmann H, Hoffmann H: Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer. 2009, 63: 32-38. 10.1016/j.lungcan.2008.03.033.
Article
PubMed
Google Scholar
Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R, Fárez-Vidal M: Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer. 2011, 129 (2): 355-364. 10.1002/ijc.25704. [http://dx.doi.org/10.1002/ijc.25704]
Article
CAS
PubMed
Google Scholar
Clinically annotated tumor database: [https://expo.intgen.org/geo/]
Swindell WR, Johnston A, Carbajal S, Han G, Wohn C, Lu J, Xing X, Nair RP, Voorhees JJ, Elder JT, Wang XJ, Sano S, Prens EP, DiGiovanni J, Pittelkow MR, Ward NL, Gudjonsson JE: Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis. PLoS ONE. 2011, 6 (4): e18266-10.1371/journal.pone.0018266. [http://dx.doi.org/10.1371%2Fjournal.pone.0018266]
Article
PubMed Central
CAS
PubMed
Google Scholar
Nair RP, Duffin KCC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJJ, Ruether A, Schreiber S, Weichenthal M, Gladman D, Rahman P, Schrodi SJ, Prahalad S, Guthery SL, Fischer J, Liao W, Kwok PYY, Menter A, Lathrop GM, Wise CA, Begovich AB, Voorhees JJ, Elder JT, Krueger GG, Bowcock AM, Abecasis GR: Collaborative Association Study of Psoriasis: Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat genet. 2009, 41 (2): 199-204. 10.1038/ng.311. [http://dx.doi.org/10.1038/ng.311]
Article
PubMed Central
CAS
PubMed
Google Scholar
Yao Y, Richman L, Morehouse C, de los Reyes M, Higgs BW, Boutrin A, White B, Coyle A, Krueger J, Kiener PA, Jallal B: Type I Interferon: Potential Therapeutic Target for Psoriasis?. PLoS ONE. 2008, 3 (7): e2737-10.1371/journal.pone.0002737. [http://dx.plos.org/10.1371%2Fjournal.pone.0002737]
Article
PubMed Central
PubMed
Google Scholar
Brynedal B, Khademi M, Wallström E, Hillert J, Olsson T, Duvefelt K: Gene expression profiling in multiple sclerosis: A disease of the central nervous system, but with relapses triggered in the periphery?. Neurobiology of Disease. 2010, 37 (3): 613-621. 10.1016/j.nbd.2009.11.014. [http://www.sciencedirect.com/science/article/pii/S0969996109003362]
Article
CAS
PubMed
Google Scholar
Kemppinen AK, Kaprio J, Palotie A, Saarela J: Systematic review of genome-wide expression studies in multiple sclerosis. BMJ Open. 2011, 1: [http://bmjopen.bmj.com/content/1/1/e000053.abstract]
Google Scholar
Horvath S, Zhang B, Carlson M, Lu K, Zhu S, Felciano R, Laurance M, Zhao W, Shu Q, Lee Y, Scheck A, Liau L, Wu H, Geschwind D, Febbo P, Kornblum H, TF C, Nelson S, Mischel P: Analysis of Oncogenic Signaling Networks in Glioblastoma Identifies ASPM as a Novel Molecular Target. Proc Natl Acad Sci USA. 2006, 103 (46): 17402-17407. 10.1073/pnas.0608396103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goring HHH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JBM, Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR, Moses EK, Blangero J: Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet. 2007, 39: 1208-1216. 10.1038/ng2119.
Article
PubMed
Google Scholar
Ghazalpour A, Doss S, Zhang B, Plaisier C, Wang S, Schadt E, Thomas A, Drake T, Lusis A, Horvath S: Integrating Genetics and Network Analysis to Characterize Genes Related to Mouse Weight. PloS Genetics. 2006, 2 (2): 8-10.1371/journal.pgen.0020008.
Article
Google Scholar
Fuller T, Ghazalpour A, Aten J, Drake T, Lusis A, Horvath S: Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome. 2007, 18 (6-7): 463-472. 10.1007/s00335-007-9043-3.
Article
PubMed Central
PubMed
Google Scholar
Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008, 9: 559-10.1186/1471-2105-9-559.
Article
PubMed Central
PubMed
Google Scholar
Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics. 2005, 21 (5): 631-643. 10.1093/bioinformatics/bti033. [http://bioinformatics.oxfordjournals.org/content/21/5/631.abstract]
Article
CAS
PubMed
Google Scholar
Li S, Harner EJ, Adjeroh D: Random KNN feature selection - a fast and stable alternative to Random Forests. BMC Bioinformatics. 2011, 12: 450-10.1186/1471-2105-12-450. [http://www.biomedcentral.com/1471-2105/12/450]
Article
PubMed Central
PubMed
Google Scholar
Chang CC, Lin CJ: Training v-Support Vector Classifiers: Theory and Algorithms. Neural Comput. 2001, 13 (9): 2119-2147. 10.1162/089976601750399335.
Article
CAS
PubMed
Google Scholar
Yang F, Wang Hz, Mi H, Lin Cd, Cai Ww: Using random forest for reliable classification and cost-sensitive learning for medical diagnosis. BMC Bioinformatics. 2009, 10 (Suppl 1): S22-10.1186/1471-2105-10-S1-S22. [http://www.biomedcentral.com/1471-2105/10/S1/S22]
Article
PubMed Central
PubMed
Google Scholar
Lopes F, Martins D, Cesar R: Feature selection environment for genomic applications. BMC Bioinformatics. 2008, 9 (1): 451-10.1186/1471-2105-9-451. [http://www.biomedcentral.com/1471-2105/9/451]
Article
PubMed Central
PubMed
Google Scholar
Frank A, Asuncionm A: UCI Machine Learning Repository. 2010, [http://archive.ics.uci.edu/ml]
Google Scholar
Meinshausen N, Bühlmann P: Stability selection. J R Stat Soc: Ser B (Statistical Methodology). 2010, 72 (4): 417-473. 10.1111/j.1467-9868.2010.00740.x. [http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x]
Article
Google Scholar
Furlanello C, Serafini M, Merler S, Jurman G: An accelerated procedure for recursive feature ranking on microarray data. Neural Networks. 2003, 16: 641-648. 10.1016/S0893-6080(03)00103-5. [http://www.sciencedirect.com/science/article/pii/S0893608003001035]
Article
CAS
PubMed
Google Scholar
Saeys Y, Inza I, Larranaga P: A review of feature selection techniques in bioinformatics. Bioinformatics. 2007, 23 (19): 2507-2517. 10.1093/bioinformatics/btm344. [http://bioinformatics.oxfordjournals.org/content/23/19/2507.%20abstract]
Article
CAS
PubMed
Google Scholar
Perlich C, Provost F, Simonoff JS: Tree Induction vs. Logistic Regression: A Learning-Curve Analysis. J Machine Learning Res. 2003, 4: 211-255.
Google Scholar
Arena V, Sussman N, Mazumdar S, Yu S, Macina O: The Utility of Structure-Activity Relationship (SAR) Models for Prediction and Covariate Selection in Developmental Toxicity: Comparative Analysis of Logistic Regression and Decision Tree Models. SAR and QSAR in Environ Res. 2004, 15: 1-18. 10.1080/1062936032000169633. [http://www.tandfonline.com/doi/abs/10.1080/1062936032000169633]
Article
CAS
Google Scholar
Pino-Mejias R, Carrasco-Mairena M, Pascual-Acosta A, Cubiles-De-La-Vega MD, Munoz-Garcia J: A comparison of classification models to identify the Fragile X Syndrome. J Appl Stat. 2008, 35 (3): 233-244. 10.1080/02664760701832976. [http://www.tandfonline.com/doi/abs/10.1080/02664760701832976]
Article
Google Scholar
van Wezel M, Potharst R: Improved customer choice predictions using ensemble methods. Eur J Operational Res. 2007, 181: 436-452. 10.1016/j.ejor.2006.05.029. [http://www.sciencedirect.com/science/article/pii/S0377221706003900]
Article
Google Scholar
Wang G, Hao J, Ma J, Jiang H: A comparative assessment of ensemble learning for credit scoring. Expert Syst Appl. 2011, 38: 223-230. 10.1016/j.eswa.2010.06.048. [http://dx.doi.org/10.1016/j.eswa.2010.06.048]
Article
Google Scholar
Shadabi F, Sharma D: Comparison of Artificial Neural Networks with Logistic Regression in Prediction of Kidney Transplant Outcomes. Proceedings of the 2009 International Conference on Future Computer and Communication, ICFCC ’09. 2009, Washington, DC, USA: IEEE Computer Society, 543-547. [http://dx.doi.org/10.1109/ICFCC.2009.139]
Chapter
Google Scholar
Sohn S, Shin H: Experimental study for the comparison of classifier combination methods. Pattern Recognit. 2007, 40: 33-40. 10.1016/j.patcog.2006.06.027. [http://www.sciencedirect.com/science/article/pii/S0031320306003116]
Article
Google Scholar
Bühlmann P, Yu B: Analyzing Bagging. Ann Stat. 2002, 30: 927-961.
Article
Google Scholar
Freund Y, Schapire RE: A decision-theoretic generalization of on-line learning and an application to boosting. Proceedings of the Second European Conference on Computational Learning Theory, EuroCOLT ’95. 1995, London, UK, UK: Springer-Verlag, 23-37. [http://dl.acm.org/citation.cfm?id=646943.712093]
Google Scholar