Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.
Article
CAS
PubMed
Google Scholar
Gentles AJ, Gallahan D: Systems biology: confronting the complexity of cancer. Cancer Res. 2011, 71 (18): 5961-5964. 10.1158/0008-5472.CAN-11-1569.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barabasi AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011, 12 (1): 56-68. 10.1038/nrg2918.
Article
PubMed Central
CAS
PubMed
Google Scholar
Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA: Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med. 2012, 4 (5): 41-10.1186/gm340.
Article
PubMed Central
CAS
PubMed
Google Scholar
He F, Chen H, Probst-Kepper M, Geffers R, Eifes S, Del Sol A, Schughart K, Zeng AP, Balling R: PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells. Mol Syst Biol. 2012, 8: 624-
Article
PubMed Central
PubMed
Google Scholar
Choi JK, Yu U, Yoo OJ, Kim S: Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics. 2005, 21 (24): 4348-4355. 10.1093/bioinformatics/bti722.
Article
CAS
PubMed
Google Scholar
De Smet R, Marchal K: Advantages and limitations of current network inference methods. Nat Rev Micro. 2010
Google Scholar
Jérôme A, Annie R, Benoit M, Jean-Luc G: Transcriptional Network Inference from Functional Similarity and Expression Data: A Global Supervised Approach. Statistical Applications in Genetics and Molecular Biology. 2012, 11 (1):
Cerulo L, Elkan C, Ceccarelli M: Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics. 2010, 11: 228-10.1186/1471-2105-11-228.
Article
PubMed Central
PubMed
Google Scholar
de Jong H: Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002, 9 (1): 67-103. 10.1089/10665270252833208.
Article
CAS
PubMed
Google Scholar
Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA: Supervised, semi-supervised and unsupervised inference of gene regulatory networks. arXiv. 2013, arXiv:1301.1083
Google Scholar
Stolovitzky G, Prill RJ, Califano A: Lessons from the DREAM2 Challenges. Ann N Y Acad Sci. 2009, 1158: 159-195. 10.1111/j.1749-6632.2009.04497.x.
Article
CAS
PubMed
Google Scholar
Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G: Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA. 2010, 107 (14): 6286-6291. 10.1073/pnas.0913357107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G: Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges. PloS one. 2010, 5: (2):e9202-
Article
PubMed Central
PubMed
Google Scholar
Oltvai ZN, Barabasi AL: Systems biology. Life's complexity pyramid. Science. 2002, 298 (5594): 763-764. 10.1126/science.1078563.
Article
CAS
PubMed
Google Scholar
Segal E, Friedman N, Koller D, Regev A: A module map showing conditional activity of expression modules in cancer. Nat Genet. 2004, 36 (10): 1090-1098. 10.1038/ng1434.
Article
CAS
PubMed
Google Scholar
Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K: Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Syst Biol. 2009, 3: 49-10.1186/1752-0509-3-49.
Article
PubMed Central
PubMed
Google Scholar
Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N: Revealing modular organization in the yeast transcriptional network. Nat Genet. 2002, 31 (4): 370-377.
CAS
PubMed
Google Scholar
Bonneau R: Learning biological networks: from modules to dynamics. Nat Chem Biol. 2008, 4 (11): 658-664. 10.1038/nchembio.122.
Article
CAS
PubMed
Google Scholar
Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003, 34 (2): 166-176. 10.1038/ng1165.
Article
CAS
PubMed
Google Scholar
Wong DJ, Chang HY: Learning more from microarrays: insights from modules and networks. The Journal of investigative dermatology. 2005, 125 (2): 175-182.
CAS
PubMed
Google Scholar
Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA: Computational discovery of gene modules and regulatory networks. Nat Biotechnol. 2003, 21 (11): 1337-1342. 10.1038/nbt890.
Article
CAS
PubMed
Google Scholar
Jain AK, Murty MN, Flynn PJ: Data clustering: a review. ACM Comput Surv. 1999, 31 (3): 264-323. 10.1145/331499.331504.
Article
Google Scholar
Dalton L, Ballarin V, Brun M: Clustering algorithms: on learning, validation, performance, and applications to genomics. Current genomics. 2009, 10 (6): 430-445. 10.2174/138920209789177601.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC: Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics. 2006, 22 (19): 2405-2412. 10.1093/bioinformatics/btl406.
Article
CAS
PubMed
Google Scholar
Miller CA, Settle SH, Sulman EP, Aldape KD, Milosavljevic A: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Med Genomics. 2011, 4: 34-10.1186/1755-8794-4-34.
Article
PubMed Central
PubMed
Google Scholar
Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008, 9 (1): 559-10.1186/1471-2105-9-559.
Article
PubMed Central
PubMed
Google Scholar
Zhang B, Horvath S: A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical Applications in Genetics and Molecular Biology. 2005, 4 (1):
Winden KD, Karsten SL, Bragin A, Kudo LC, Gehman L, Ruidera J, chwind DH, Engel J: A systems level, functional genomics analysis of chronic epilepsy. PloS one. 2011, 6 (6): e20763-10.1371/journal.pone.0020763.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rosen EY, Wexler EM, Versano R, Coppola G, Gao F, Winden KD, Oldham MC, Martens LH, Zhou P, Farese RV: Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron. 2011, 71 (6): 1030-1042. 10.1016/j.neuron.2011.07.021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saris C, Horvath S, van Vught P, van Es M, Blauw H, Fuller T, Langfelder P, DeYoung J, Wokke J, Veldink J: Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genomics. 2009, 10 (1): 405-10.1186/1471-2164-10-405.
Article
PubMed Central
PubMed
Google Scholar
Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA. 2006, 103 (46): 17402-17407. 10.1073/pnas.0608396103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL: Model-based clustering and data transformations for gene expression data. Bioinformatics. 2001, 17 (10): 977-987. 10.1093/bioinformatics/17.10.977.
Article
CAS
PubMed
Google Scholar
Joshi A, Van de Peer Y, Michoel T: Analysis of a Gibbs sampler method for model-based clustering of gene expression data. Bioinformatics. 2008, 24 (2): 176-183. 10.1093/bioinformatics/btm562.
Article
CAS
PubMed
Google Scholar
McNicholas PD, Murphy TB: Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics. 2010, 26 (21): 2705-2712. 10.1093/bioinformatics/btq498.
Article
CAS
PubMed
Google Scholar
Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K: Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol. 2006, 7 (5): R37-10.1186/gb-2006-7-5-r37.
Article
PubMed Central
PubMed
Google Scholar
Reimand J, Tooming L, Peterson H, Adler P, Vilo J: GraphWeb: mining heterogeneous biological networks for gene modules with functional significance. Nucleic Acids Res. 2008, 36 (Web Server): W452-459. 10.1093/nar/gkn230.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qi J, Michoel T, Butler G: An integrative approach to infer regulation programs in a transcription regulatory module network. J Biomed Biotechnol. 2012, 2012: 245968-
PubMed Central
PubMed
Google Scholar
McCord RP, Berger MF, Philippakis AA, Bulyk ML: Inferring condition-specific transcription factor function from DNA binding and gene expression data. Mol Syst Biol. 2007, 3: 100-
Article
PubMed Central
PubMed
Google Scholar
Baitaluk M, Kozhenkov S, Ponomarenko J: An integrative approach to inferring gene regulatory module networks. PLoS One. 2012, 7 (12): e52836-10.1371/journal.pone.0052836.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vega VB, Woo XY, Hamidi H, Yeo HC, Yeo ZX, Bourque G, Clarke ND: Inferring Direct Regulatory Targets of a Transcription Factor in the DREAM2 Challenge. Challenges of Systems Biology: Community Efforts to Harness Biological Complexity. 2009, 1158: 215-223.
CAS
Google Scholar
Hurley D, Araki H, Tamada Y, Dunmore B, Sanders D, Humphreys S, Affara M, Imoto S, Yasuda K, Tomiyasu Y: Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res. 2011
Google Scholar
Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV: TRANSFAC(R): transcriptional regulation, from patterns to profiles. Nucl Acids Res. 2003, 31 (1): 374-378. 10.1093/nar/gkg108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Quandt K, Frech K, Karas H, Wingender E, Werner T: MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995, 23 (23): 4878-4884. 10.1093/nar/23.23.4878.
Article
PubMed Central
CAS
PubMed
Google Scholar
Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W: BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005, 21 (16): 3439-3440. 10.1093/bioinformatics/bti525.
Article
CAS
PubMed
Google Scholar
Gordon S: Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. 2005, New York: Springer, 397-420.
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13 (11): 2498-2504. 10.1101/gr.1239303.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols. 2008, 4 (1): 44-57. 10.1038/nprot.2008.211.
Article
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37 (1): 1-13. 10.1093/nar/gkn923.
Article
PubMed Central
Google Scholar
Joshi A, De Smet R, Marchal K, Van de Peer Y, Michoel T: Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics. 2009, 25 (4): 490-496. 10.1093/bioinformatics/btn658.
Article
CAS
PubMed
Google Scholar
Reverter-Gomez A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP: Regulatory Impact Factors: Unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics. 2010, btq051-
Google Scholar
Newton R, Wernisch L: Rwui: A web application to create user friendly web interfaces for R scripts. R News. 2007, 7 (2): 32-35.
Google Scholar
R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. 2012
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004, 5 (10): R80-10.1186/gb-2004-5-10-r80.
Article
PubMed Central
PubMed
Google Scholar
Fang C, Weiliang Q, Ruben HZ, Ross L, W X: clues: An R Package for Nonparametric Clustering Based on Local Shrinking. Journal of Statistical Software. 2010, 33 (4): 1-16.
Google Scholar
Fraley C, Raftery AE: MCLUST Version 3: An R Package for Normal Mixture Modeling and Model-Based Clustering. Seattle, WA 98195-4322 USA: Department of Statistics, University of Washington. 2006
Google Scholar
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K: cluster: Cluster Analysis Basics and Extensions. R package version 1143. 2012
Google Scholar
Rand WM: Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association. 1971, 66 (336): 846-850. 10.1080/01621459.1971.10482356.
Article
Google Scholar
Datta S: clValid: An R Package for Cluster Validation. Journal of Statistical Software. 2008, 25 (4):
Hartigan JA, Wong MA: Algorithm AS 136: A k-means clustering algorithm. Applied Statistics. 1979, 28 (1): 100-108. 10.2307/2346830.
Article
Google Scholar
Kaufman L, Rousseeuw P: Finding Groups in Data: An Introduction to Cluster Analysis. 1990, Wiley-Interscience
Chapter
Google Scholar
Dopazo J, Carazo JM: Phylogenetic Reconstruction Using an Unsupervised Growing Neural Network That Adopts the Topology of a Phylogenetic Tree. J Mol Evol. 1997, 44 (2): 226-233. 10.1007/PL00006139.
Article
CAS
PubMed
Google Scholar
Yin L, Huang CH, Ni J: Clustering of gene expression data: performance and similarity analysis. BMC Bioinformatics. 2006, S19-7 Suppl 4
Bonnet E, Tatari M, Joshi A, Michoel T, Marchal K, Berx G, Van de Peer Y: Module network inference from a cancer gene expression data set identifies microRNA regulated modules. PloS one. 2010, 5 (4): e10162-10.1371/journal.pone.0010162.
Article
PubMed Central
PubMed
Google Scholar
Michoel T, Maere S, Bonnet E, Joshi A, Saeys Y, Van den Bulcke T, Van Leemput K, van Remortel P, Kuiper M, Marchal K: Validating module network learning algorithms using simulated data. BMC Bioinformatics. 2007, 8 (Suppl 2): S5-10.1186/1471-2105-8-S2-S5.
Article
PubMed Central
PubMed
Google Scholar
Bonnet E, Michoel T, Van de Peer Y: Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data. Bioinformatics. 2010, 26 (18): i638-i644. 10.1093/bioinformatics/btq395.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vermeirssen V, Joshi A, Michoel T, Bonnet E, Casneuf T, Van de Peer Y: Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development. Mol Biosyst. 2009
Google Scholar
Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM: A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009, 10 (4): 252-263. 10.1038/nrg2538.
Article
CAS
PubMed
Google Scholar
Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, Akalin A, Schmeier S, Kanamori-Katayama M, Bertin N: An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 2010, 140 (5): 744-752. 10.1016/j.cell.2010.01.044.
Article
CAS
PubMed
Google Scholar
Schaefer U, Schmeier S, Bajic VB: TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins. Nucleic Acids Res. 2011, 39 (Database): D106-110. 10.1093/nar/gkq945.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics. 2005, 21 (16): 3448-3449. 10.1093/bioinformatics/bti551.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995, 57 (1): 289-300.
Google Scholar
Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S: GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics. 2010, 26 (7): 976-978. 10.1093/bioinformatics/btq064.
Article
CAS
PubMed
Google Scholar
Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L, Freise CE, Olthoff KM, Ghobrial RM, McIver P: Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Mol Med. 2009, 15 (3-4): 85-94.
Article
PubMed Central
CAS
PubMed
Google Scholar