Bartlett GJ, Porter CT, Borkakoti N, Thornton JM: Analysis of catalytic residues in enzyme active sites. J Mol Biol 2002, 324: 105–121. 10.1016/S0022-2836(02)01036-7
Article
CAS
PubMed
Google Scholar
Ahmad S, Gromiha MM, Sarai A: Analysis and Prediction of DNA-binding proteins and their binding residues based on Composition, Sequence and Structural Information. Bioinformatics 2004, 20: 477–486. 10.1093/bioinformatics/btg432
Article
CAS
PubMed
Google Scholar
Rost B, Sander C: Conservation and prediction of solvent accessibility in protein families. Proteins 1994, 20: 216–226.
Article
CAS
PubMed
Google Scholar
Cuff JA, Barton GJ: Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000, 40: 502–511. 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q
Article
CAS
PubMed
Google Scholar
Pollastri G, Baldi P, Fariselli P, Casadio R: Prediction of coordination number and relative solvent accessibility. Proteins 2002, 47: 142–153. 10.1002/prot.10069
Article
CAS
PubMed
Google Scholar
Ahmad S, Gromiha MM: NETASA: Neural network based prediction of solvent accessibility. Bioinformatics 2002, 18: 819–824. 10.1093/bioinformatics/18.6.819
Article
CAS
PubMed
Google Scholar
Ahmad S, Gromiha MM, Sarai A: Real-value prediction of solvent accessibility from amino acid sequence. Proteins 2003, 50: 629–635. 10.1002/prot.10328
Article
CAS
PubMed
Google Scholar
Ahmad S, Gromiha MM, Sarai A: RVP-Net: online predictions of real-value accessible surface area of proteins from single sequences. Bioinformatics 2003, 19: 1849–1851. 10.1093/bioinformatics/btg249
Article
CAS
PubMed
Google Scholar
Lakowski RA: PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 2001, 29: 221–222. 10.1093/nar/29.1.221
Article
Google Scholar
Nielsen JE, Beier L, Otzen D, Borchert TV, Frantzen HB, Andersen KV, Svendsen A: Electrostatics in the active site of an alpha-amylase. Eur J Biochem 1999, 264: 816–824. 10.1046/j.1432-1327.1999.00664.x
Article
CAS
PubMed
Google Scholar
Latex2html software[http://www.latex2html.org]
Richmond TJ, Richards FM: Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol 1978, 119: 537–555.
Article
CAS
PubMed
Google Scholar
Kabsch W, Sander C: Dictionary of protein secondary structure: Pattern recognition of hydrogen-bond and geometrical features. Biopolymers 1983, 22: 2577–2637.
Article
CAS
PubMed
Google Scholar
Eisenhaber F, Argos P: Improved strategy in analytical surface calculation for molecular system- handling of singularities and computational efficiency. J Comp Chem 1993, 14: 1272–1280.
Article
CAS
Google Scholar
NACCESS, Computer program, Department of Biochemistry and Molecular Biology[http://wolf.bi.umist.ac.uk/unix/naccess.html]
Fraczkiewicz R, Braun W: Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comp Chem 1998, 19: 319–333. Publisher Full Text 10.1002/(SICI)1096-987X(199802)19:3<319::AID-JCC6>3.3.CO;2-3
Article
CAS
Google Scholar
Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982, 157: 105–132.
Article
CAS
PubMed
Google Scholar
Ponnuswamy PK, Gromiha MM: Prediction of transmembrane helices from hydrophobic characteristics of proteins. Int J Pept Protein Res 1993, 42: 326–341.
Article
CAS
PubMed
Google Scholar
Bioinfo Bank, Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan[http://gibk26.bse.kyutech.ac.jp/jouhou/]
ASAView: Solvent accessibility graphics for proteins[http://www.netasa.org/asaview/]
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Re 2000, 28: 235–242. 10.1093/nar/28.1.235
Article
CAS
Google Scholar
Gilis D, Rooman M: Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials. J Mol Biol 1996, 257: 1112–1126. 10.1006/jmbi.1996.0226
Article
CAS
PubMed
Google Scholar
Gilis D, Rooman M: Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence. J Mol Biol 1997, 272: 276–290. 10.1006/jmbi.1997.1237
Article
CAS
PubMed
Google Scholar
Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A: Role of structural and sequence information in the prediction of protein stability changes: comparison between buried and partially buried mutations. Protein Engg 1999, 12: 549–555. 10.1093/protein/12.7.549
Article
CAS
Google Scholar
Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A: Importance of surrounding residues for protein stability of partially buried mutations. J Biomol Struct Dyn 2000, 18: 281–95.
Article
CAS
PubMed
Google Scholar
Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A: Importance of mutant position in Ramachandran plot for predicting protein stability of surface mutations. Biopolymers 2002, 64: 210–220. 10.1002/bip.10125
Article
CAS
PubMed
Google Scholar
Bava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A: ProTherm, version 4.0: Thermodynamic Database for Proteins and Mutants. Nucleic Acids Res 2004, 32: D120-D121. 10.1093/nar/gkh082
Article
PubMed Central
CAS
PubMed
Google Scholar