Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. *Proc Natl Acad Sci U S A* 2001, 98(9):5116–5121.

Article
PubMed Central
CAS
PubMed
Google Scholar

Spang R: Diagnostic signatures from microarrays: a bioinformatics concept for personalized medicine. *BIOSILICO* 2003, 1(2):64–68. [http://www.sciencedirect.com/science/article/B75GS-4BRJ67W-J%/2/2fa50a82fa348085a698a1b42db4f6a0]

Article
CAS
Google Scholar

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. *Science* 1999, 286(5439):531–537.

Article
CAS
PubMed
Google Scholar

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. *Nature* 2000, 403: 503–511.

Article
CAS
PubMed
Google Scholar

D'haeseleer P: How does gene expression clustering work? *Nat Biotech* 2005, 23(12):1499–1501.

Article
Google Scholar

Brunet JP, Tamayo P, Golub TR, Mesirov JP: Metagenes and molecular pattern discovery using matrix factorization. *Proceedings of the National Academy of Sciences of the United States of America* 2004, 101(12):4164–4169.

Article
PubMed Central
CAS
PubMed
Google Scholar

Liu L, Hawkins DM, Ghosh S, Young SS: Robust singular value decomposition analysis of microarray data. *Proc Natl Acad Sci USA* 2003, 100(23):13167–13172.

Article
PubMed Central
CAS
PubMed
Google Scholar

McLachlan GJ, Bean RW, Peel D: A mixture model-based approach to the clustering of microarray expression data. *Bioinformatics* 2002, 18(3):413–422.

Article
CAS
PubMed
Google Scholar

Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. *Proc Natl Acad Sci USA* 2001, 98(24):13790–13795.

Article
PubMed Central
CAS
PubMed
Google Scholar

Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V: Molecular classification of cutaneous malignant melanoma by gene expression profiling. *Nature* 2000, 406(6795):536–540.

Article
CAS
PubMed
Google Scholar

Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, Sikic BI: Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. *Cancer Res* 2005, 65(19):8679–8689.

Article
CAS
PubMed
Google Scholar

Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Ng IO, Rijn M, Botstein D, Brown PO: Gene Expression Patterns in Human Liver Cancers. *Mol Biol Cell* 2002, 13(6):1929–1939.

Article
PubMed Central
CAS
PubMed
Google Scholar

Chowdary D, Lathrop J, Skelton J, Curtin K, Briggs T, Zhang Y, Yu J, Wang Y, Mazumder A: Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative. *J Mol Diagn* 2006, 8: 31–39.

Article
PubMed Central
CAS
PubMed
Google Scholar

Dyrskjot L, Thykjaer T, Kruh0ffer M, Jensen JL, Marcussen N, Hamilton-Dutoit S, Wolf H, Orntoft TF: Identifying distinct classes of bladder carcinoma using microarrays. *Nat Genet* 2003, 33: 90–96.

Article
CAS
PubMed
Google Scholar

Laiho P, Kokko A, Vanharanta S, Salovaara R, Sammalkorpi H, Jarvinen H, Mecklin JP, Karttunen TJ, Tuppurainen K, Davalos V, Schwartz S, Arango D, Makinen MJ, Aaltonen LA: Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis. *Oncogene* 2007, 26(2):312–320.

Article
CAS
PubMed
Google Scholar

Lapointe J, Li C, Higgins JP, Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. *Proc Natl Acad Sci USA* 2004, 101(3):811–816.

Article
PubMed Central
CAS
PubMed
Google Scholar

Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO, Israel MA: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. *Proc Natl Acad Sci USA* 2005, 102(16):5814–5819.

Article
PubMed Central
CAS
PubMed
Google Scholar

Risinger JI, Maxwell GL, Chandramouli GVR, Jazaeri A, Aprelikova O, Patterson T, Berchuck A, Barrett JC: Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. *Cancer Res* 2003, 63: 6–11.

CAS
PubMed
Google Scholar

Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR: Gene expression correlates of clinical prostate cancer behavior. *Cancer Cell* 2002, 1(2):203–209.

Article
CAS
PubMed
Google Scholar

Yeoh EJ, Ross ME, Shurtle3 SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. *Cancer Cell* 2002, 1(2):133–143.

Article
CAS
PubMed
Google Scholar

de Hoon MJL, Imoto S, Nolan J, Miyano S: Open source clustering software. *Bioinformatics* 2004, 20(9):1453–1454.

Article
CAS
PubMed
Google Scholar

Eisen M, Spellman P, Brown P, Botstein D: Cluster analysis and display of genome-wide expression patterns. *Proc Natl Acad Sci USA* 1998, 95: 14863–8.

Article
PubMed Central
CAS
PubMed
Google Scholar

Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: mining tens of millions of expression profiles-database and tools update. *Nucleic Acids Res* 2007, 35 (Database issue):D760-D765.

Article
PubMed Central
CAS
PubMed
Google Scholar

Jain AK, Dubes RC: *Algorithms for clustering data*. Prentice Hall; 1988.

Google Scholar

McQueen J: Some methods of classification and analysis of multivariate observations. *5th Berkeley Symposium in Mathematics, Statistics and Probability* 1967, 281–297.

Google Scholar

McLachlan GJ, Peel D: *Finite Mixture Models*. Wiley Series in Probability and Statistics., Wiley, New York; 2000.

Book
Google Scholar

Ng AY, Jordan MI, Weiss Y: On spectral clustering: Analysis and an algorithm. In *Advances in Neural Information Processing Systems (NIPS) 14*. Dietterich T, Becker S, Ghahramani Z; 2001.

Google Scholar

Ertoz L, Steinbach M, Kumar V: A new shared nearest neighbor clustering algorithm and its applications. *Workshop on Clustering High Dimensional Data and its Applications* 2002, 105–115.

Google Scholar

Milligan GW, Cooper MC: A study of standardization of variables in cluster analysis. *Journal of Classification* 1988, 5: 181–204.

Article
Google Scholar

de Souto MCP, de Araujo DSA, Costa IG, Soares RGF, Ludermir TB, Schliep A: Comparative Study on Normalization Procedures for Cluster Analysis of Gene Expression Datasets. In *Proc. of IEEE International Joint Conference on Neural Networks*. IEEE Computer Society; 2008:2793–2799.

Google Scholar

Costa IG, Carvalho FAD, Souto MCPD: Comparative Analysis of Clustering Methods for Gene Expression Time Course Data. *Genetics and Molecular Biology* 2004, 27(4):623–631. [http://www.scielo.br/pdf/gmb/v27n4/22434.pdf]

Article
CAS
Google Scholar

Datta S, Datta S: Comparisons and validation of statistical clustering techniques for microarray gene expression data. *Bioinformatics* 2003, 19: 459–466.

Article
CAS
PubMed
Google Scholar

Datta S, Datta S: Evaluation of clustering algorithms for gene expression data. *BMC Bioinformatics* 2006, 7(Suppl 4):S17.

Article
PubMed Central
PubMed
Google Scholar

Datta S, Datta S: Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. *BMC Bioinformatics* 2006, 7: 397.

Article
PubMed Central
PubMed
Google Scholar

Pirooznia M, Yang JY, Yang MQ, Deng Y: A comparative study of different machine learning methods on microarray gene expression data. *BMC Genomics* 2008, 9(Suppl 1):S13.

Article
PubMed Central
PubMed
Google Scholar

Loganantharaj R, Cheepala S, Clifford J: Metric for Measuring the Effectiveness of Clustering of DNA Microarray Expression. *BMC Bioinformatics* 2006, 7(Suppl 2):S5.

Article
PubMed Central
PubMed
Google Scholar

Kerr G, Ruskin HJ, Crane M, Doolan P: Techniques for clustering gene expression data. *Comput Biol Med* 2008, 38(3):283–293.

Article
CAS
PubMed
Google Scholar

de Souto MCP, Costa IG, de Araujo DSA, Ludermir TB, Schliep A: Supplemental Material: Clustering of Cancer Gene Expression Data: a Comparative Study. 2008.

Google Scholar

Benjamini Y, Yekutieli D: The Control of the False Discovery Rate in Multiple Testing under Dependency. *The Annals of Statistics* 2001, 29(4):1165–1188.

Article
Google Scholar

von Luxburg U: A tutorial on spectral clustering. *Tech rep* Max Plank Institute for Biological Cybernetics; 2006. [http://www.kyb.mpg.de/publication.html?publ=4139]

Google Scholar

Bar-Joseph Z, Gifford DK, Jaakkola TS: Fast optimal leaf ordering for hierarchical clustering. *Bioinformatics* 2001, 17 Suppl 1: S22-S29.

Article
CAS
PubMed
Google Scholar

Giraud-Carrier C, Vilalta R, Brazdil P: Introduction to the special issue on meta-learning. *Machine Learning* 2004, 54(3):187–193.

Article
Google Scholar

de Souto MCP, R RBCP, Soares RGF, de Araujo DSA, Costa IG, Ludermir TB, Schliep A: Ranking and Selecting Clustering Algorithms Using a Meta-Learning Approach. In *Proc. of IEEE International Joint Conference on Neural Networks*. IEEE Computer Society; 2008:3728–3734.

Google Scholar

Blockeel H, Vanschoren J: Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning. *Knowledge Discovery in Databases: PKDD* 2007, 6–17.

Google Scholar

Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. *Bioinformatics* 2005, 21(5):631–643.

Article
CAS
PubMed
Google Scholar

Quackenbush J: Computational analysis of cDNA microarray data. *Nature Reviews* 2001, 6(2):418–428.

Article
Google Scholar

Slonim D: From patterns to pathways: gene expression data analysis comes of age. *Nature Genetics* 2002, 32: 502–508.

Article
CAS
PubMed
Google Scholar

Milligan GW, Cooper MC: A study of the comparability of external criteria for hierarchical cluster analysis. *Multivariate Behavorial Research* 1986, 21: 441–458.

Article
Google Scholar

Monti S, Tamayo P, Mesirov J, Golub T: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. *Machine Learning* 2003, 52: 91–118.

Article
Google Scholar

Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR: Multiclass cancer diagnosis using tumor gene expression signatures. *Proc Natl Acad Sci USA* 2001, 98(26):15149–15154.

Article
PubMed Central
CAS
PubMed
Google Scholar

Stegmaier K, Ross KN, Colavito SA, OMalley S, Stockwell BR, Golub TR: Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation. *Nature Genetics* 2004, 36(3):257–263.

Article
CAS
PubMed
Google Scholar

Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. *Nat Genet* 2002, 30: 41–47.

Article
CAS
PubMed
Google Scholar

Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Ramaswamy S, Richards WG, Sugarbaker DJ, Bueno R: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. *Cancer Res* 2002, 62(17):4963–4967.

CAS
PubMed
Google Scholar

Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. *Cancer Res* 2003, 63(7):1602–1607.

CAS
PubMed
Google Scholar

Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JYH, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR: Prediction of central nervous system embryonal tumour outcome based on gene expression. *Nature* 2002, 415(6870):436–442.

Article
CAS
PubMed
Google Scholar

Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RCT, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. *Nat Med* 2002, 8: 68–74.

Article
CAS
PubMed
Google Scholar

Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, Schultz PG, Powell SM, Moskaluk CA, Frierson HF, Hampton GM: Molecular classification of human carcinomas by use of gene expression signatures. *Cancer Res* 2001, 61(20):7388–7393.

CAS
PubMed
Google Scholar

West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA, Marks JR, Nevins JR: Predicting the clinical status of human breast cancer by using gene expression profiles. *Proc Natl Acad Sci USA* 2001, 98(20):11462–11467.

Article
PubMed Central
CAS
PubMed
Google Scholar

Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I: Diversity of gene expression in adenocarcinoma of the lung. *Proc Natl Acad Sci USA* 2001, 98(24):13784–13789.

Article
PubMed Central
CAS
PubMed
Google Scholar

Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. *Nat Med* 2001, 7(6):673–679.

Article
PubMed Central
CAS
PubMed
Google Scholar

Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, Kalyana-Sundaram S, Wei JT, Rubin MA, Pienta KJ, Shah RB, Chinnaiyan AM: Integrative molecular concept modeling of prostate cancer progression. *Nat Genet* 2007, 39: 41–51.

Article
CAS
PubMed
Google Scholar