Moore AD, Björklund AK, Ekman D, Bornberg-Bauer E, Elofsson A. Arrangements in the modular evolution of proteins. Trends Biochem Sci. 2008; 33(9):444–51.
Article
CAS
PubMed
Google Scholar
Marsh JA, Teichmann SA. How do proteins gain new domains?Genome Biol. 2010; 11(7):126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forslund K, Sonnhammer ELL. Evolution of protein domain architectures. Methods Mol Biol. 2012; 856:187–216.
Article
CAS
PubMed
Google Scholar
Bornberg-Bauer E, Albà M M. Dynamics and adaptive benefits of modular protein evolution. Curr Opin Struct Biol. 2013; 23(3):459–66.
Article
CAS
PubMed
Google Scholar
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate JG, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012; 40(Database-Issue):290–301.
Article
CAS
Google Scholar
Ekman D, Björklund AK, Frey-Skött J, Elofsson A. Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J Mol Biol. 2005; 348(1):231–43.
Article
CAS
PubMed
Google Scholar
Levitt M. Nature of the protein universe. Proc Natl Acad Sci U S A. 2009; 106(27):11079–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kersting AR, Bornberg-Bauer E, Moore AD, Grath S. Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol Evol. 2012; 4(3):316–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawashima T, Kawashima S, Tanaka C, Murai M, Yoneda M, Putnam NH, et al. Domain shuffling and the evolution of vertebrates. Genome Res. 2009; 19(8):1393–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leclère L, Rentzsch F. Repeated evolution of identical domain architecture in metazoan netrin domain-containing proteins. Genome Biol Evol. 2012; 4(9):883–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang H, Oates ME, Pethica RB, Greenwood JM, Sardar AJ, Rackham OJL, et al. A daily-updated tree of (sequenced) life as a reference for genome research. Sci Rep. 2013; 3:2015.
PubMed
Google Scholar
Buckee CO, Recker M. Evolution of the multi-domain structures of virulence genes in the human malaria parasite, Plasmodium falciparum. PLoS Comput Biol. 2012; 8(4):1002451.
Article
CAS
Google Scholar
de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet. 2003; 37:409–33.
Article
CAS
PubMed
Google Scholar
Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000; 302(2):205–17.
Article
CAS
PubMed
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7:539.
Article
PubMed
PubMed Central
Google Scholar
Ait LA, Yamak Z, Morgenstern B. DIALIGN at GOBICS–multiple sequence alignment using various sources of external information. Nucleic Acids Res. 2013; 41:W3-7.
Article
PubMed
PubMed Central
Google Scholar
Papadopoulos JS, Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics. 2007; 23(9):1073–79.
Article
CAS
PubMed
Google Scholar
Terrapon N, Weiner J, Grath S, Moore AD, Bornberg-Bauer E. Rapid similarity search of proteins using alignments of domain arrangements. Bioinformatics. 2014; 30(2):274–81.
Article
CAS
PubMed
Google Scholar
Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, et al. Pfam: clans, web tools and services. Nucleic Acids Res. 2006; 34:247–51.
Article
CAS
Google Scholar
Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, et al. The Pfam protein families database. Nucleic Acids Res. 2008; 36(Database issue):281–8.
Google Scholar
Thompson JD, Koehl P, Ripp R, Poch O. BAliBASE 3.0: latest Developments of the Multiple Sequence Alignment Benchmark. Proteins. 2005; 61(1):127–36.
Article
CAS
PubMed
Google Scholar
Gotoh O. Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments. J Mol Biol. 1996; 264(4):823–38.
Article
CAS
PubMed
Google Scholar
Söding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005; 21(7):951–60.
Article
PubMed
Google Scholar
Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992; 89(22):10915–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dayhoff MOSRM, Orcutt BC. A model of evolutionary change in proteins. Atlas Protein Sequence Struct. 1978; 5:345–52.
Google Scholar
Geer LY, Domrachev M, Lipman DJ, Bryant SH. CDART: protein homology by domain architecture. Genome Res. 2002; 12(10):1619–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988; 73(1):237–44.
Article
CAS
PubMed
Google Scholar
Paten B, Herrero J, Beal K, Birney E. Sequence progressive alignment, a framework for practical large-scale probabilistic consistency alignment. Bioinformatics. 2008; 25(3):259–91.
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011; 7(10):1002195.
Article
CAS
Google Scholar
Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005; 33(2):511–8.
Article
CAS
PubMed
PubMed Central
Google Scholar