Malone JH, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011;9:34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beissbarth T. Interpreting experimental results using gene ontologies. Methods Enzymol 2005, 411:340–352.
Article
CAS
Google Scholar
Khatri P, Draghici S, Ostermeier GC, Krawetz SA. Profiling gene expression using onto-express. Genomics. 2002;79:266–70.
Article
CAS
PubMed
Google Scholar
Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.
Article
CAS
PubMed
Google Scholar
Beißbarth T, Speed TP. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 2004;20:1464–5.
Article
CAS
PubMed
Google Scholar
Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics. 2005;21:1943–9.
Article
CAS
PubMed
Google Scholar
Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome Res. 2007;17:1537–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25:75–82.
Article
CAS
PubMed
Google Scholar
Glaab E, Baudot A, Krasnogor N, Valencia A. TopoGSA: network topological gene set analysis. Bioinformatics. 2010;26:1271–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massa MS, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC Syst Biol. 2010;4:121.
PubMed
PubMed Central
Google Scholar
Dutta B, Wallqvist A, Reifman J. PathNet: a tool for pathway analysis using topological information. Source Code Biol Med. 2012;7:10.
Article
PubMed
PubMed Central
Google Scholar
Goeman JJ, Bühlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics. 2007;23:980–7.
Article
CAS
PubMed
Google Scholar
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol. 2012;8, e1002375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32 suppl 1:D277–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39 suppl 1:D691–7.
Article
CAS
PubMed
Google Scholar
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the pathway interaction database. Nucleic Acids Res. 2009;37 suppl 1:D674–9.
Article
CAS
PubMed
Google Scholar
Nishimura D. BioCarta. Biotech Softw Internet Rep Comput Softw J Sci. 2001;2:117–20.
Article
Google Scholar
Tarca AL, Bhatti G, Romero R. A comparison of gene set analysis methods in terms of sensitivity. Prioritization and Specificity PLoS ONE. 2013;8, e79217.
Article
CAS
PubMed
Google Scholar
Evangelou M, Rendon A, Ouwehand WH, Wernisch L, Dudbridge F. Comparison of methods for competitive tests of pathway analysis. PLoS One. 2012;7, e41018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abatangelo L, Maglietta R, Distaso A, D’Addabbo A, Creanza TM, Mukherjee S, et al. Comparative study of gene set enrichment methods. BMC Bioinformatics. 2009;10:275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, et al. Methods and approaches in the topology-based analysis of biological pathways. Front Physiol. 2013;4.
Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;40:e133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team RC. R: A language and environment for statistical computing. 2012.
Google Scholar
Gu Z, Liu J, Cao K, Zhang J, Wang J. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes. BMC Syst Biol. 2012;6:56.
Article
PubMed
PubMed Central
Google Scholar
Kramer F, Bayerlová M, Beißbarth T. R-based software for the integration of pathway data into bioinformatic algorithms. Biology. 2014;3:85–100.
Article
PubMed
PubMed Central
Google Scholar
Kramer F, Bayerlová M, Klemm F, Bleckmann A, Beißbarth T. rBiopaxParser—an R package to parse, modify and visualize BioPAX data. Bioinformatics. 2013;29:520–2.
Article
CAS
PubMed
Google Scholar
Kramer F. Integration of pathway data as prior knowledge into methods for network reconstruction. Göttingen: Georg-August Universität, Diss; 2014.
Google Scholar
Tarca AL, Draghici S, Bhatti G, Romero R. Down-weighting overlapping genes improves gene set analysis. BMC Bioinformatics. 2012;13:136.
Article
PubMed
PubMed Central
Google Scholar
Smyth GK. limma: Linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, NY; 2005:397–420. [Statistics for Biology and Health]
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar
Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69:026113.
Article
CAS
Google Scholar
Maciejewski H. Gene set analysis methods: statistical models and methodological differences. Brief Bioinform. 2014, 15:504–518.
Article
PubMed
Google Scholar
Jiang Z, Gentleman R. Extensions to gene set enrichment. Bioinformatics. 2007;23:306–13.
Article
CAS
PubMed
Google Scholar
Naeem H, Zimmer R, Tavakkolkhah P, Küffner R. Rigorous assessment of gene set enrichment tests. Bioinformatics. 2012;28:1480–6.
Article
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenburg ME, Liou LS, Gerry NP, Frampton GM, Cohen HT, Christman MF. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer. 2003;3:31.
Article
PubMed
PubMed Central
Google Scholar
Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A. 2004;101:2173–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102:19075–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barth AS, Kuner R, Buness A, Ruschhaupt M, Merk S, Zwermann L, et al. Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies. J Am Coll Cardiol. 2006;48:1610–7.
Article
CAS
PubMed
Google Scholar
Hong Y, Ho KS, Eu KW, Cheah PY. A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13:1107–14.
Article
CAS
Google Scholar
Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Walker DG, et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics. 2007;28:311–22.
Article
CAS
PubMed
Google Scholar
Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, et al. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 2008;68:927–36.
Article
CAS
PubMed
Google Scholar
Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, et al. Transcriptome profile of human colorectal adenomas. Mol Cancer Res MCR. 2007;5:1263–75.
Article
CAS
PubMed
Google Scholar
Runne H, Kuhn A, Wild EJ, Pratyaksha W, Kristiansen M, Isaacs JD, et al. Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proc Natl Acad Sci U S A. 2007;104:14424–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong Y, Downey T, Eu KW, Koh PK, Cheah PY. A “metastasis-prone” signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. Clin Exp Metastasis. 2010;27:83–90.
Article
CAS
PubMed
Google Scholar
Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL, Engel JH, et al. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer. 2008;47:8–20.
Article
CAS
PubMed
Google Scholar
Wang Y, Roche O, Yan MS, Finak G, Evans AJ, Metcalf JL, et al. Regulation of endocytosis via the oxygen-sensing pathway. Nat Med. 2009;15:319–24.
Article
CAS
PubMed
Google Scholar
Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 2008;55:2016–27.
CAS
PubMed
Google Scholar
Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 2009;16:259–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R, et al. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer J Int Cancer. 2011;129:355–64.
Article
CAS
Google Scholar
Hou J, Aerts J, Hamer B d, van Ijcken W, Bakker M d, Riegman P, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One. 2010;5:e10312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Yao Z, Li C, Lu Y, Gao C. Gene expression profiling in human high-grade astrocytomas. Comp Funct Genomics. 2011;2011:245137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med. 2010;2:52ra73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, James M, Middleton FA, Davis RL. Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2005;137B:5–16.
Article
Google Scholar
Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F, Fatah R, et al. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood. 2009;114:3909–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nunez-Iglesias J, Liu C-C, Morgan TE, Finch CE, Zhou XJ. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One. 2010;5, e8898.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Tienen FHJ, Praet SFE, de Feyter HM, van den Broek NM, Lindsey PJ, Schoonderwoerd KGC, et al. Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes. J Clin Endocrinol Metab. 2012;97:3261–9.
Article
CAS
PubMed
Google Scholar
Uddin S, Ahmed M, Hussain A, Abubaker J, Al-Sanea N, AbdulJabbar A, et al. Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy. Am J Pathol. 2011;178:537–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Affer M, Dao S, Liu C, Olshen AB, Mo Q, Viale A, et al. Gene expression differences between enriched normal and chronic myelogenous leukemia quiescent stem/progenitor cells and correlations with biological abnormalities. J Oncol. 2011;2011:798592.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donahue TR, Tran LM, Hill R, Li Y, Kovochich A, Calvopina JH, et al. Integrative survival-based molecular profiling of human pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:1352–63.
Article
CAS
Google Scholar
Gyorffy B, Molnar B, Lage H, Szallasi Z, Eklund AC. Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples. PLoS One. 2009;4, e5645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H, et al. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci U S A. 2007;104:12451–6.
Article
CAS
PubMed
PubMed Central
Google Scholar