Narlikar L, Ovcharenko I. Identifying regulatory elements in eukaryotic genomes. Brief Funct Genomics Proteomics. 2009; 8:215–30.
Article
CAS
Google Scholar
Portales-Casamar E, Arenillas D, Lim J, Swanson MI, Jiang S, McCallum A, Kirov S, Wasserman WW. The PAZAR database of gene regulatory information coupled to the ORCA toolkit for the study of regulatory sequences. Nucleic Acids Res. 2009; 37:54–60.
Article
CAS
Google Scholar
Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, Aerts S, Mahony S, Sleumer MC, Bilenky M, Haeussler M, Griffith M, Gallo SM, Giardine B, Hooghe B, Van Loo P, Blanco E, Ticoll A, Lithwick S, Portales-Casamar E, Donaldson IJ, Robertson G, Wadelius C, De Bleser P, Vlieghe D, Halfon MS, Wasserman W, Hardison R, Bergman CM, Jones SJM. Open Regulatory Annotation Consortium: ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res. 2008; 36:107–13.
Article
CAS
Google Scholar
Worsley-Hunt R, Bernard V, Wasserman WW. Identification of cis-regulatory sequence variations in individual genome sequences. Genome Med. 2011; 3:1–14.
Article
CAS
Google Scholar
Jarinova O, Ekker M. Regulatory variations in the era of next-generation sequencing: Implications for clinical molecular diagnostics. Hum Mutat. 2012; 33:1021–30.
Article
CAS
PubMed
Google Scholar
Hannenhalli S. Eukaryotic transcription factor binding sites–modeling and integrative search methods. Bioinformatics. 2008; 24:1325–31.
Article
CAS
PubMed
Google Scholar
Garcia-Alcalde F, Blanco A, Shepherd A. An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs. BMC Bioinformatics. 2010; 11:551–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garner MM, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: Application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 1981; 9:3047–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galas DJ, Schmitz A. DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 1978; 5:3157–170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249:505–10.
Article
CAS
PubMed
Google Scholar
Riley TR, Slattery M, Abe N, Rastogi C, Liu D, Mann RS, Bussemaker HJ. SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol Biol. 2014; 1196:255–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elnitski L, Jin VX, Farnham PJ, Jones SJM. Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res. 2006; 16:1455–64.
Article
CAS
PubMed
Google Scholar
Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA. Genome-wide location and function of DNA binding proteins. Science. 2000; 290:2306–9.
Article
CAS
PubMed
Google Scholar
Park PJ. ChIP-Seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009; 10:669–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshua H, Peter K, Nicolas N, Peter P. ChIP-chip versus ChIP-Seq: Lessons for experimental design and data analysis. BMC Genomics. 2011; 12:134–46.
Article
CAS
Google Scholar
Adli M, Bernstein BE. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-Seq. Nat Protoc. 2011; 6:1656–1668.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhee HS, Pugh BF. Chip-exo: A method to identify genomic location of DNA-binding proteins at near single nucleotide accuracy. In: Curr. Protoc. Mol. Biol. Hoboken: John Wiley & Sons, Inc.: 2012. Chap. 21. Unit 21.24.
Google Scholar
Nguyen TT, Androulakis IP. Recent advances in the computational discovery of transcription factor binding sites. Algorithms. 2009; 2:582–605.
Article
CAS
Google Scholar
Hu M, Yu J, Taylor JMG, Chinnaiyan AM, Qin ZS. On the detection and refinement of transcription factor binding sites using ChIP-Seq data. Nucleic Acids Res. 2010; 38:2154–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 2010; 38:105–10.
Article
CAS
Google Scholar
Matys V, Kel-Margoulis O, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K. TRANSFAC ®;and its module TRANSCompel ®;: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006; 34:108–10.
Article
Google Scholar
Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen C-Y, Chou A, Ienasescu H, Lim J, Shyr C, Tan G, Zhou M, Lenhard B, Sandelin A, Wasserman WW. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 2014; 42:142–7.
Article
CAS
Google Scholar
Kulakovskiy IV, Medvedeva YA, Schaefer U, Kasianov AS, Vorontsov IE, Bajic VB, Makeev VJ. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res. 2013; 41:195–202.
Article
CAS
Google Scholar
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38:576–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K, Zheng H, Goity A, van Bakel H, Lozano JC, Galli M, Lewsey MG, Huang E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G, Walhout AJM, Bouget FY, Ratsch G, Larrondo LF, Ecker JR, Hughes TR. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014; 158:1431–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Machanick P. Inferring direct DNA binding from ChIP-Seq. Nucleic Acids Res. 2012; 40:128–8.
Article
CAS
Google Scholar
Worsley-Hunt R, Mathelier A, Del Peso L, Wasserman WW. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment. BMC Genomics. 2014; 15:472. doi:10.1186/1471-2164-15-472.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hannenhalli S, Levy S. Promoter prediction in the human genome. Bioinformatics. 2001; 17 Suppl 1:90–6.
Article
Google Scholar
Wasserman WW, Krivan W. In silico identification of metazoan transcriptional regulatory regions. Naturwissenschaften. 2003; 90:156–66.
CAS
PubMed
Google Scholar
Bulyk ML. Computational prediction of transcription-factor binding site locations. Genome Biol. 2003; 5:201–1.
Article
PubMed
PubMed Central
Google Scholar
Pavesi G, Mauri G, Pesole G. In silico representation and discovery of transcription factor binding sites. Brief Bioinform. 2004; 5:217–36.
Article
CAS
PubMed
Google Scholar
Sandve GK, Drabløs F. A survey of motif discovery methods in an integrated framework. Biol Direct. 2006; 1:11–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Das MK, Dai HK. A survey of DNA motif finding algorithms. BMC Bioinformatics. 2007; 8 Suppl 7:21–1.
Article
CAS
Google Scholar
Kibet CK, Machanick P. Transcription factor motif quality assessment requires systemartic comparative analysis. F1000Res. 2015; 4(ISCB Comm J). doi:10.12688/f1000research.7408.2.
Cardon LR, Stormo GD. Expectation maximization algorithm for identifying protein-binding sites with variable lengths from unaligned DNA fragments. J Mol Biol. 1992; 223:159–70.
Article
CAS
PubMed
Google Scholar
Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science. 1993; 262:208–14.
Article
CAS
PubMed
Google Scholar
Hertz GZ, Hartzell GW, Stormo GD. Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Comput Appl Biosci (CABIOS). 1990; 6:81–93.
CAS
Google Scholar
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Intl Conf Intell Syst Mol Biol ISMB. 1994; 2:28–36.
CAS
Google Scholar
Tompa M, Li N, Bailey TL, Church GM, de Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Régnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z. Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol. 2005; 23:137–44.
Article
CAS
PubMed
Google Scholar
Jothi R, Cuddapah S, Barski A, Cui K, Zhao K. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 2008; 36:5221–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods. 2008; 5:829–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulakovskiy IV, Boeva V, Favorov A, Makeev V. Deep and wide digging for binding motifs in ChIP-Seq data. Bioinformatics. 2010; 26:2622–3.
Article
CAS
PubMed
Google Scholar
Mercier E, Droit A, Li L, Robertson G, Zhang X, Gottardo R. An integrated pipeline for the genome-wide analysis of transcription factor binding sites from ChIP-Seq. PLoS ONE. 2011; 6:16432.
Article
CAS
Google Scholar
Ma W, Noble WS, Bailey TL. Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat Protoc. 2014; 9:1428–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27:1696–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terai G, Mizuno T, Takagi T. Evaluation of a method for predicting transcription factors using motif-search programs. JSBi Genome Inform. 1999; 10:249–50.
CAS
Google Scholar
del Val C, Pelz O, Glatting KH, Barta E, Hotz-Wagenblatt A. PromoterSweep: a tool for identification of transcription factor binding sites. Theor Chem Acc. 2010; 125:583–91.
Article
CAS
Google Scholar
Roulet E, Fisch I, Junier T, Bucher P, Mermod N. Evaluation of computer tools for the prediction of transcription factor binding sites on genomic DNA. In Silico Biol. 1998; 1:21–8.
CAS
PubMed
Google Scholar
Tran NTL, Huang CH. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data. Biol Direct. 2014; 9:4. doi:10.1186/1745-6150-9-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sandve GK, Abul O, Walseng V, Drabløs F. Improved benchmarks for computational motif discovery. BMC Bioinformatics. 2007; 8:193–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klepper K, Sandve GK, Abul O, Johansen J, Drablos F. Assessment of composite motif discovery methods. BMC Bioinformatics. 2008; 9:123–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
McLeay RC, Bailey TL. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics. 2010; 11:165–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Orenstein Y, Linhart C, Shamir R. Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data. PLoS ONE. 2012; 7:46145–6145.
Article
CAS
Google Scholar
Hu J, Li B, Kihara D. Limitations and potentials of current motif discovery algorithms. Nucleic Acids Res. 2005; 33:4899–913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina-Rivera A, Abreu-Goodger C, Thomas-Chollier M, Salgado H, Collado-Vides J, van Helden J. Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res. 2011; 39:808–24.
Article
CAS
PubMed
Google Scholar
Weirauch MT, Cote AG, Norel R, Annala M, Zhao Y, Riley TR, Saez-Rodriguez J, Cokelaer T, Vedenko A, Talukder S, DREAM5 Consortium, Bussemaker HJ, Morris QD, Bulyk ML, Stolovitzky G, Hughes TR. Evaluation of methods for modeling transcription factor sequence specificity. Nat Biotechnol. 2013; 31:126–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavesi G, Mereghetti P, Mauri G, Pesole G. Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res. 2004; 32:199–203.
Article
CAS
Google Scholar
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489:57–74.
Article
PubMed Central
CAS
Google Scholar
Montgomery SB, Griffith OL, Sleumer MC, Bergman CM, Bilenky M, Pleasance ED, Prychyna Y, Zhang X, Jones SJM. ORegAnno: an open access database and curation system for literature-derived promoters, transcription factor binding sites and regulatory variation. Bioinformatics. 2006; 22:637–40.
Article
CAS
PubMed
Google Scholar
Farnham PJ. Insights from genomic profiling of transcription factors. Nat Rev Genet. 2009; 10:605–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cline MS, Karchin R. Using bioinformatics to predict the functional impact of SNVs. Bioinformatics. 2011; 27:441–8.
Article
CAS
PubMed
Google Scholar
Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A. BioMart — biological queries made easy. BMC Genomics. 2009; 10:22–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5:80.
Article
Google Scholar
Durinck S, Moreau Y, Kasprzyk A, Davis S, de Moor B, Brazma A, Huber W. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005; 21:3439–440.
Article
CAS
PubMed
Google Scholar
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009; 4:1184–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sand O, Valéry Turatsinze J, van Helden J. Evaluating the prediction of cis-acting regulatory elements in genome sequences In: Frishman D, Valencia A, editors. Modern Genome Annotation. New York: Springer: 2008. p. 55–90.
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000; 16:276–7.
Article
CAS
PubMed
Google Scholar
Bardet AF, He Q, Zeitlinger J, Stark A. A computational pipeline for comparative ChIP-Seq analyses. Nat Protoc. 2012; 7:45–61.
Article
CAS
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10:25–35.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilbanks EG, Facciotti MT. Evaluation of algorithm performance in ChIP-Seq peak detection. PLoS ONE. 2010; 5:11471.
Article
CAS
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:137–46.
Article
CAS
Google Scholar
Spyrou C, Stark R, Lynch A, Tavaré S. BayesPeak: Bayesian analysis of ChIP-Seq data. BMC Bioinformatics. 2009; 10:299–316.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cairns J, Spyrou C, Stark R, Smith ML, Lynch AG, Tavaré S. BayesPeak — an R package for analysing ChIP-Seq data. Bioinformatics. 2011; 27:713–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, Green MR. ChIPpeakAnno: a Bioconductor package to annotate ChIP-Seq and ChIP-chip data. BMC Bioinformatics. 2010; 11:237–47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gorski JJ, Savage KI, Mulligan JM, McDade SS, Blayney JK, Ge Z, Harkin DP. Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Res. 2011; 39:9536–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Noble WS. Searching for statistically significant regulatory modules. Bioinformatics. 2003; 19:16–25.
Article
Google Scholar
Lin T, Ray P, Sandve GK, Uguroglu S, Xing EP. BayCis: a Bayesian hierarchical HMM for cis-regulatory module decoding in metazoan genomes In: Vingron ML, Wong L, editors. Research in Computational Molecular Biology: Proceedings of the 12th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2008); Lecture Notes in Computer Science, vol. 4955. Berlin, Heidelberg: Springer: 2008. p. 66–81.
Google Scholar
Frith MC, Hansen U, Weng Z. Detection of cis-element clusters in higher eukaryotic DNA. Bioinformatics. 2001; 17:878–89.
Article
CAS
PubMed
Google Scholar
Frith MC, Li MC, Weng Z. Cluster-Buster: Finding dense clusters of motifs in DNA sequences. Nucleic Acids Res. 2003; 31:3666–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frith MC, Spouge JL, Hansen U, Weng Z. Statistical significance of clusters of motifs represented by position specific scoring matrices in nucleotide sequences. Nucleic Acids Res. 2002; 30:3214–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011; 27:1017–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frith MC, Fu Y, Yu L, Chen JF, Hansen U, Weng Z. Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res. 2004; 32:1372–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turatsinze JV, Thomas-Chollier M, Defrance M, van Helden J. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat Protoc. 2008; 3:1578–88.
Article
CAS
PubMed
Google Scholar
Beckstette M, Homann R, Giegerich R, Kurtz S. Fast index based algorithms and software for matching position specific scoring matrices. BMC Bioinformatics. 2006; 7:389–414.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Q, Liu JS. Modeling within-motif dependence for transcription factor binding site predictions. Bioinformatics. 2004; 20:909.
Article
CAS
PubMed
Google Scholar
Barash Y, Elidan G, Friedman N, Kaplan T. Modeling dependencies in protein-DNA binding sites In: Vingron ML, Istrail S, Pevzner P, Waterman M, editors. Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology (RECOMB 2003). New York: Association for Computational Machinery (ACM): 2003. p. 28–37.
Google Scholar
King OD, Roth FP. A non parametric model for transcription factor binding sites. Nucleic Acids Res. 2003; 31:116–24.
Article
CAS
Google Scholar
Sharon E, Lubliner S, Segal E. A feature-based approach to modeling protein–DNA interactions. PLoS Comput Biol. 2008; 4:1000154.
Article
CAS
Google Scholar
Ellrott K, Yang C, Sladek FM, Jiang T. Identifying transcription factor binding sites through Markov chain optimization. Bioinformatics. 2002; 18:100–9.
Article
Google Scholar
Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997; 268:78–94.
Article
CAS
PubMed
Google Scholar
Thijs G, Lescot M, Marchal K, Rombauts S, de Moor B, Rouze P, Moreau Y. A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics. 2001; 17:1113–22.
Article
CAS
PubMed
Google Scholar
Mathelier A, Wasserman WW. The next generation of transcription factor binding site prediction. PLoS Comput Biol. 2013; 9:1003214.
Article
CAS
Google Scholar
Kulakovskiy IV, Levitsky V, Oshchepkov D, Bryzgalov L, Vorontsov IE, Makeev VJ. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites. J Bioinform Comput Biol. 2013; 11:1340004.
Article
PubMed
CAS
Google Scholar
Fazius E, Shelest V, Shelest E. SiTaR: a novel tool for transcription factor binding site prediction. Bioinformatics. 2011; 27:2806–11.
Article
CAS
PubMed
Google Scholar
Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the immortality of television sets: ‘function’ in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013; 5:578–90.
Article
PubMed
PubMed Central
CAS
Google Scholar