Pihur V, Datta S, Datta S. Finding common genes in multiple cancer types through meta–analysis of microarray experiments: A rank aggregation approach. Genomics. 2008; 92(6):400–3.
Article
CAS
PubMed
Google Scholar
Kim S, Lin C-W, Tseng GC. Metaktsp: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis. Bioinformatics. 2016; 32:1966–173.
Article
CAS
PubMed
Google Scholar
Lazar C, Meganck S, Taminau J, Steenhoff D, Coletta A, Molter C, Y.Weiss-Solis D, Duque R, Bersini H, Nowé A. Batch effect removal methods for microarray gene expression data integration: a survey. Brief Bioinform. 2012; 14(4):469–90.
Article
PubMed
Google Scholar
Gagnon-Bartsch JA, Speed TP. Using control genes to correct for unwanted variation in microarray data. Biostatistics. 2012; 13(3):539–52.
Article
PubMed
PubMed Central
Google Scholar
Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, De Longueville F, Kawasaki ES, Lee KY, et al. The microarray quality control (maqc) project shows inter-and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006; 24(9):1151–61.
Article
CAS
PubMed
Google Scholar
Su Z, Labaj P, Li S, Thierry-Mieg J, et al. A comprehensive assessment of rna-seq accuracy, reproducibility and information content by the sequencing quality control consortium. Nat Biotechnol. 2014; 32(9):903–14.
Article
CAS
Google Scholar
Johnson W, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007; 8(1):118–27.
Article
PubMed
Google Scholar
Hornung R, Boulesteix AL, Causeur D. Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment. BMC Bioinforma. 2016; 17(1):1.
Article
Google Scholar
Sims AH, Smethurst GJ, Hey Y, Okoniewski MJ, Pepper SD, Howell A, Miller CJ, Clarke RB. The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets–improving meta-analysis and prediction of prognosis. BMC Med Genomics. 2008; 1(1):42.
Article
PubMed
PubMed Central
Google Scholar
Listgarten J, Kadie C, Schadt EE, Heckerman D. Correction for hidden confounders in the genetic analysis of gene expression. Proc Natl Acad Sci USA. 2010; 107(38):16465–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lê Cao KA, Rohart F, McHugh L, Korm O, Wells CA. YuGene: A simple approach to scale gene expression data derived from different platforms for integrated analyses. Genomics. 2014; 103:239–51.
Article
PubMed
Google Scholar
Breiman L. Random forests. Mach Learn. 2001; 45(1):5–32.
Article
Google Scholar
Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002; 97(457):77–87.
Article
CAS
Google Scholar
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002; 46(1-3):389–422.
Article
Google Scholar
Díaz-Uriarte R, De Andres SA. Gene selection and classification of microarray data using random forest. BMC Bioinforma. 2006; 7(1):1.
Article
Google Scholar
Sowa JP, Atmaca Ö, Kahraman A, Schlattjan M, Lindner M, Sydor S, Scherbaum N, Lackner K, Gerken G, Heider D, et al.Non-invasive separation of alcoholic and non-alcoholic liver disease with predictive modeling. PloS ONE. 2014; 9(7):101444.
Article
Google Scholar
Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003; 17(3):166–73.
Article
CAS
Google Scholar
Lê Cao KA, Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinforma. 2011; 12:253.
Article
Google Scholar
Hughey JJ, Butte AJ. Robust meta-analysis of gene expression using the elastic net. Nucleic Acids Res. 2015; 43(12):79.
Article
Google Scholar
Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009; 27(8):1160–7.
Article
PubMed
PubMed Central
Google Scholar
Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson K, Khosrotehrani K, Fisk NM, Lê Cao K, Wells CA. A molecular classification of human mesenchymal stromal cells. PeerJ. 2016; 4:1845.
Article
Google Scholar
Eslami A, Qannari EM, Kohler A, Bougeard S. Multi-group PLS regression: application to epidemiology. In: New Perspectives in Partial Least Squares and Related Methods. New York: Springer: 2013. p. 243–55.
Google Scholar
Eslami A, Qannari EM, Kohler A, Bougeard S. Algorithms for multi-group PLS. J Chemometrics. 2014; 28(3):192–201.
Article
CAS
Google Scholar
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996; 58(1):267–88.
Google Scholar
Tenenhaus M. La Régression PLS: Théorie et Pratique. Paris: Editions Technip; 1998.
Google Scholar
Bilic J, Belmonte JCI. Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart?Stem Cells. 2012; 30(1):33–41.
Article
CAS
PubMed
Google Scholar
Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell stem cell. 2009; 5(1):111–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newman AM, Cooper JB. Lab-specific gene expression signatures in pluripotent stem cells. Cell stem cell. 2010; 7(2):258–62.
Article
CAS
PubMed
Google Scholar
Wells CA, Mosbergen R, Korn O, Choi J, Seidenman N, Matigian NA, Vitale AM, Shepherd J. Stemformatics: visualisation and sharing of stem cell gene expression. Stem Cell Res. 2013; 10(3):387–95.
Article
CAS
PubMed
Google Scholar
Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19(2):185–93.
Article
CAS
PubMed
Google Scholar
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012; 486(7403):346–52.
CAS
PubMed
PubMed Central
Google Scholar
Cancer Genome Atlas Network and others. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490(7418):61–70.
Article
Google Scholar
Whitcomb BW, Perkins NJ, Albert PS, Schisterman EF. Treatment of batch in the detection, calibration, and quantification of immunoassays in large-scale epidemiologic studies. Epidemiology (Cambridge). 2010; 21(Suppl 4):44.
Article
Google Scholar
Rohart F, San Cristobal M, Laurent B. Selection of fixed effects in high dimensional linear mixed models using a multicycle ecm algorithm. Comput Stat Data Anal. 2014; 80:209–22.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995; 57(1):289–300.
Google Scholar
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318(5858):1917–20.
Article
CAS
PubMed
Google Scholar
Tsialikas J, Romer-Seibert J. LIN28: roles and regulation in development and beyond. Development. 2015; 142(14):2397–404.
Article
CAS
PubMed
Google Scholar
Krivega M, Geens M, Van de Velde H. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions. Reproduction. 2014; 148(5):531–44.
Article
CAS
PubMed
Google Scholar
Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. Gata-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 2006; 127(5):1041–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 2007; 9(2):201–9.
Article
CAS
PubMed
Google Scholar
Jiang YZ, Yu KD, Zuo WJ, Peng WT, Shao ZM. Gata3 mutations define a unique subtype of luminal-like breast cancer with improved survival. Cancer. 2014; 120(9):1329–37.
Article
CAS
PubMed
Google Scholar
McCleskey BC, Penedo TL, Zhang K, Hameed O, Siegal GP, Wei S. Gata3 expression in advanced breast cancer: prognostic value and organ-specific relapse. Am J Clin Path. 2015; 144(5):756–63.
Article
CAS
PubMed
Google Scholar
Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V, Savvulidi F, Kokavec J, Necas E, Berkova A, et al. Myb transcriptionally regulates the mir-155 host gene in chronic lymphocytic leukemia. Blood. 2011; 117(14):3816–825.
Article
CAS
PubMed
Google Scholar
Khan FH, Pandian V, Ramraj S, Aravindan S, Herman TS, Aravindan N. Reorganization of metastamirs in the evolution of metastatic aggressive neuroblastoma cells. BMC Genomics. 2015; 16(1):1.
Article
CAS
Google Scholar
Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, et al. Xbp1 promotes triple-negative breast cancer by controlling the hif1 [agr] pathway. Nature. 2014; 508(7494):103–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garczyk S, von Stillfried S, Antonopoulos W, Hartmann A, Schrauder MG, Fasching PA, Anzeneder T, Tannapfel A, Ergönenc Y, Knüchel R, et al. Agr3 in breast cancer: Prognostic impact and suitable serum-based biomarker for early cancer detection. PloS ONE. 2015; 10(4):0122106.
Article
Google Scholar
Yamamoto-Ibusuki M, Yamamoto Y, Fujiwara S, Sueta A, Yamamoto S, Hayashi M, Tomiguchi M, Takeshita T, Iwase H. C6orf97-esr1 breast cancer susceptibility locus: influence on progression and survival in breast cancer patients. Eur J Human Genet. 2015; 23(7):949–56.
Article
CAS
Google Scholar
May FE, Westley BR. Tff3 is a valuable predictive biomarker of endocrine response in metastatic breast cancer. Endocr Relat Cancer. 2015; 22(3):465–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andres SA, Brock GN, Wittliff JL. Interrogating differences in expression of targeted gene sets to predict breast cancer outcome. BMC Cancer. 2013; 13(1):1.
Article
Google Scholar
Andres SA, Smolenkova IA, Wittliff JL. Gender-associated expression of tumor markers and a small gene set in breast carcinoma. Breast. 2014; 23(3):226–33.
Article
PubMed
Google Scholar
Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, Möllerström E, Karlsson P, Helou K. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res. 2010; 16(15):3860–874.
Article
CAS
PubMed
Google Scholar
Lefevre L, Omeiri H, Drougat L, Hantel C, Giraud M, Val P, Rodriguez S, Perlemoine K, Blugeon C, Beuschlein F, et al. Combined transcriptome studies identify aff3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma. Oncogenesis. 2015; 4(7):161.
Article
Google Scholar
Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirie F, Rigby PW, Staudt LM. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature. 1990; 345(6277):686–92.
Article
CAS
PubMed
Google Scholar
Schöler HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990; 344(6265):435–9.
Article
PubMed
Google Scholar
Niwa H, Miyazaki J-i, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000; 24(4):372–6.
Article
CAS
PubMed
Google Scholar
Matin MM, Walsh JR, Gokhale PJ, Draper JS, Bahrami AR, Morton I, Moore HD, Andrews PW. Specific knockdown of Oct4 and β2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells. 2004; 22(5):659–68.
Article
CAS
PubMed
Google Scholar
Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011; 144(3):439–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Briggs JA, Sun J, Shepherd J, Ovchinnikov DA, Chung TL, Nayler SP, Kao LP, Morrow CA, Thakar NY, Soo SY, et al. Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells. 2013; 31(3):467–78.
Article
CAS
PubMed
Google Scholar
Chung HC, Lin RC, Logan GJ, Alexander IE, Sachdev PS, Sidhu KS. Human induced pluripotent stem cells derived under feeder-free conditions display unique cell cycle and DNA replication gene profiles. Stem Cells Dev. 2011; 21(2):206–16.
Article
PubMed
PubMed Central
Google Scholar
Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA, Svendsen CN. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009; 457(7227):277–80.
Article
CAS
PubMed
Google Scholar
Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M, Jaenisch R, Young RA. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell. 2010; 7(2):249–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008; 3(3):340–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010; 143(4):527–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Sasaki A, Yamamoto M, Nakamura M, Sutou K, Osafune K, Yamanaka S. Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nat Commun. 2014; 5:3678.
CAS
PubMed
Google Scholar
Andrade LN, Nathanson JL, Yeo GW, Menck CFM, Muotri AR. Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Hum Mol Genet. 2012; 21(17):3825–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu K, Yu J, Suknuntha K, Tian S, Montgomery K, Choi KD, Stewart R, Thomson JA, Slukvin II. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood. 2011; 117(14):109–19.
Article
Google Scholar
Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009; 4(6):472.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010; 42(12):1113–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010; 51(1):297–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vitale AM, Matigian NA, Ravishankar S, Bellette B, Wood SA, Wolvetang EJ, Mackay-Sim A. Variability in the generation of induced pluripotent stem cells: importance for disease modeling. Stem Cells Transl Med. 2012; 1(9):641–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009; 324(5928):797–801.
Article
CAS
PubMed
PubMed Central
Google Scholar