A greedy alignmentfree distance estimator for phylogenetic inference
 Sharma V. Thankachan^{1},
 Sriram P. Chockalingam^{2},
 Yongchao Liu^{3},
 Ambujam Krishnan^{4} and
 Srinivas Aluru^{2, 3}Email author
https://doi.org/10.1186/s1285901716580
© The Author(s) 2017
Published: 7 June 2017
Abstract
Background
Alignmentfree sequence comparison approaches have been garnering increasing interest in various data and computeintensive applications such as phylogenetic inference for largescale sequences. While kmer based methods are predominantly used in real applications, the average common substring (ACS) approach is emerging as one of the prominent alignmentfree approaches. This ACS approach has been further generalized by some recent work, either greedily or exactly, by allowing a bounded number of mismatches in the common substrings.
Results
We present ALFREDG, a greedy alignmentfree distance estimator for phylogenetic tree reconstruction based on the concept of the generalized ACS approach. In this algorithm, we have investigated a new heuristic to efficiently compute the lengths of common strings with mismatches allowed, and have further applied this heuristic to phylogeny reconstruction. Performance evaluation using real sequence datasets shows that our heuristic is able to reconstruct comparable, or even more accurate, phylogenetic tree topologies than the kmacs heuristic algorithm at highly competitive speed.
Conclusions
ALFREDG is an alignmentfree heuristic for evolutionary distance estimation between two biological sequences. This algorithm is implemented in C++ and has been incorporated into our opensource ALFRED software package (http://alurulab.cc.gatech.edu/phylo).
Keywords
Background
Accurate estimation of the evolutionary distance between two sequences is fundamental and critical to phylogenetic analysis aiming to reconstruct the correct evolutionary history and estimate the time of divergence between species. One popular approach to evolutionary distance estimation relies on sequence alignment. Typically, the pipeline for alignmentbased phylogenetic inference generally works by three steps. Firstly, we perform alltoall pairwise sequence alignment to gain a pairwise distance matrix for the input sequences. The evolutionary distance between two sequences in the matrix is typically inferred from an optimal alignment, e.g. equal to one minus percent identity in the optimal alignment. Secondly, we construct a guide tree from the pairwise distance matrix and then conduct progressive alignment of multiple sequences following the order determined by the guide tree. Finally, we infer a phylogenetic tree from the resulting multiple alignments using a tree inference program which can be distance, parsimony, bayesian, or likelihoodbased. Nevertheless, it needs to be stressed that we could also choose to construct a phylogenetic tree directly from the pairwise distance matrix computed in the first step, using some distancebased tree construction algorithm such as unweighted pair group method with arithmetic mean (UPGMA) [1] or neighborjoining (NJ) [2].
Although they may have high accuracy, alignmentbased approaches involve high computational cost, thus resulting in slow speed. This is because pairwise alignment using dynamic programming has a quadratic complexity with respect to sequence length. This is even more challenging when constructing the phylogenetic tree for a large number of sequences, especially long sequences (e.g. eukaryotic genomes). In this case, some research efforts have been devoted to accelerating the tree construction using high performance computing architectures [3–6]. In addition to acceleration, as an alternative to alignmentbased approaches, alignmentfree approaches emerge and become popular, mainly owing to their speed superiority. For instance, given a collection of d sequences of average length n, the time complexity for pairwise distance matrix computation can be as high as O(d ^{2} n ^{2}) when using pairwise alignment. In contrast, by using alignmentfree exact kmer (a kmer is a string of k characters) counting, the whole computation can be done in O(d ^{2} n) time, significantly reducing the runtime by a factor of n. Moreover, alignmentfree approaches are capable of overcoming some difficulties, which challenge alignmentbased approaches, such as genetic recombination and shuffling during the evolution process.
A variety of alignmentfree approaches have been proposed, most of which are based on the concept of sequence seeding that extracts fixed or variable length substrings from a given sequence. Based on fixedlength seeding, there are two kinds of alignmentfree approaches: exact kmer counting [7] and spaced kmer counting [8]. For the exact kmer counting approach, it builds a kmer frequency (or occurrence) vector for each sequence and computes the pairwise distance using some distance measure based on the frequency vectors. Example distance measures include Euclidean distance [9], KullbackLebler divergence [10] and the one proposed by Edgar [11]. The Edgar’s distance measure models the similarity between two sequences as the fraction of exact kmers shared by them, and then computes the pairwise distance by subtracting the similarity value from one. This distance measure has been shown to be highly related to genetic distance and has been used in other applications like metagenomic sequence classification [12]. For the spaced kmer counting approach, it allows character mismatches between kmers at some predefined positions and usually employs multiple pattern templates in order to improve accuracy.
Based on variablelength seeding, there are three kinds of approaches: the average common substring (ACS) method [13], the kmismatch ACS (kACS) method [14, 15] and the mutation distances (K _{ r }) [16]. The distance based on these methods can be computed using suffix trees/arrays. Given two sequences, the ACS method first calculates the length of the longest substring that starts at each position i in one sequence and matches some substring of the other sequence. Subsequently, it averages and normalizes all of the lengths computed to represent the similarity of the two sequences. Finally, the resulting similarity value is used to compute the pairwise distance. The time complexity of the ACS method is directly proportional to the sum of lengths of the two sequences.
In contrast, the kACS method computes the pairwise distance by finding substring pairs with upto k mismatches, given two sequences. Specifically, instead of determining the longest common substrings, the kACS method aims to find the longest substring starting at each position in one sequence and matching some substring in the other sequence with upto k mismatches. The mutation distances is closely related to ACS, where the difference is only in the conversion from the similarity value to a pairwise distance.
Unlike the ACS method, the solutions to the kACS method involves high computational cost. For example, an algorithm given by Leimeister and Morgenstern [14] takes O(k n ^{2}) time in the worst case, which is certainty not a suitable replacement of alignment based methods. However, they proposed a faster algorithm, namely kmacs, that computes an approximation to kACS based distance. Another algorithm by Apostolico et al. runs in O(n ^{2}/ logn) time [17]. This raises an open question, whether the exact kACS based distance can be computed in strictly subquadratic time. Initial attempts were focused on the special case of k=1 [18, 19]. Later, Aluru et al. [15, 20] positively answered this question by presenting an algorithm with a worst case run time of O(n logk n) for any constant k. The algorithm is much more complicated than the original ACS method and even the kACS approximation by [14]. Moreover the practical variant of this algorithm can get quite slow for even moderately large values of k due to its exponential dependency on k [21]. However, this algorithm has its merit as the first subquadratic time algorithm for exact kACS computation for any positive integer k. A recently proposed algorithm by Pizzi is based on filtering approaches [22]. In summary, on one hand, we have a fast approximation algorithm [14] and on the other hand, we have an exact (theoretical) algorithm [15], that might work well for small values of k in practice. Inspired by both algorithms, we introduce a new greedy heuristic for alignmentfree distance estimation, named ALFREDG. The heuristic is implemented in C++ and has been incorporated into our opensource ALFRED software package (http://alurulab.cc.gatech.edu/phylo).
Problem definition
Methods
Approximating ACS _{ k }(·,·)
It is observed that ACS _{ k }(·,·) can be easily computed in O(n ^{2} k) time via X×Y number of LCP _{ k }(·,·) queries, which is clearly not affordable. The first attempt to circumvent this issue was made by Leimeister and Morgenstern [14], who presented a heuristic method, named kmacs, that quickly computes an approximation to ACS _{ k }(X,Y). The key idea is to replace λ _{ k }(i) with λ k′(i) in the equation for ACS _{ k }, where α _{ i }=a r g maxjLCP(X _{ i },Y _{ j }) and \(\lambda _{k}'(i) =\mathsf {LCP}_{k}(\mathsf {X}_{i},\mathsf {Y}_{\alpha _{i}})\phantom {\dot {i}\!}\). Using GST, we can compute α _{ i } for all values of i in O(n) time. Therefore, λ k′(i) for all values of i and the corresponding distance can be easily obtained in O(n k) time. Note that the ratio of λ _{ k }(i) to λ k′(i) can be as high as Θ(n). Nonetheless, it has been shown that for most practical cases, the average of the latter can serve as a good approximation to the average of the former.
Our approach

Map each \(\mathsf {X}_{i} \in \mathcal {S}(u)\) to a pair (X _{ i },k e y), where key is the lexicographic rank of the suffix X _{ i+h+1} among all suffixes of X and Y. In other words, key is the lexicographic rank of the suffix obtained by deleting the first (h+1) characters of X _{ i }. Using GST, we can compute key in constant time.

Likewise, map each \(\mathsf {Y}_{j} \in \mathcal {S}(u)\) to a pair (Y _{ j },k e y), where key is the lexicographic rank of Y _{ j+h+1} among all suffixes of X and Y.

Sort all pairs in the ascending order of key.

For each pair (X _{ i },·), find the closest pairs, say (Y _{ a },·) and (Y _{ b },·), towards the left and right side (if they exist) that are created from a suffix of Y, and update A[i]←a r g maxj∈{a,b,A[i]}LCP _{1}(X _{ i },Y _{ j }).
It can be easily verified that A[i] will be correctly updated to β _{ i } while processing the lowest common ancestor node of the leaves corresponding to X _{ i } and \(\mathsf {Y}_{\beta _{i}}\). The overall run time is \(nk+\sum _{u} \mathcal {S}(u)\log \mathcal {S}(u)=O(nk+nH\log n)\), where H is the height of GST and its expected value is O(logn) [24].
Implementation
ALFREDG is implemented in C++ and is incorporated in our opensource ALFRED software package (http://alurulab.cc.gatech.edu/phylo). This algorithm takes a collection of sequences as input and computes an approximation to ACS _{ k }(·,·) for all pairs of sequences. For this, we have used the opensource libdivsufsort library [25] to construct the suffix array (SA) and have used the implementations in the SDSL library [26] to build the corresponding LCP table (using the Kasai algorithm [27]) and the range minimum query (RMQ) table (using the BenderFarach’s algorithm [28]). (Note that the operations on a suffix tree can be simulated using the corresponding SA, inverse SA, LCP array and RMQ table). The SDSL library has support for using bit compression techniques to reduce the size of the tables and arrays in exchange for slower query time. However, we don’t compress these data structures, and instead we have used 32bit integers for indices as well as prefix lengths.
Results and discussion
Benchmark datasets
We have assessed the performance of ALFREDG for the reconstruction of phylogenetic trees by using three sequence datasets, which contain prokaryotic DNA sequences, eukaryotic DNA sequences, and protein sequences, respectively. The prokaryotic sequence dataset consists of 27 Primate mitochondrial genomes, which was previously studied by [16] in order to assess the performance of alignmentfree approaches for phylogenetic tree reconstruction. In the study, a reference tree was constructed based on a multiple alignment of the sequences.
The eukaryotic sequence dataset is constructed by Newton et al. [29] from 32 Roseobacter genomes, by extracting 70 universal singlecopy genes for the 32 genomes with each gene being completely sequenced in all genomes and having no ambiguous start/stop sites. The 70 genes for each genome are, subsequently, concatenated and aligned with ClustalW in Geneious 4.0 (available from http://www.geneious.com) using Escherichia coli K12 substrain MG1655 as the outgroup. The multiple sequence alignment file is available at http://alurulab.cc.gatech.edu/phylo, from which the raw sequences corresponding to the 32 Roseobacter genomes are extracted and then used in our study. In our study, we have used the phylogenetic tree presented in Newton et al. [29] as the reference tree.
The protein sequence dataset is taken from BAliBASE (v3.0) [30], which is popular benchmark dataset for multiple sequence alignment. We have used 218 sets of protein sequences in BAliBASE, and constructed the reference trees from the corresponding reference alignments using the proml program available in PHYLIP [31], which implements the Maxmimum Likelihood method. For each of the parameter selected for our experiments, we report the average RFdistance of the 218 trees constructed from this set.
Phylogenetic tree construction and comparison
Given a set of d sequences, we first compute the distance between any sequence pair and then construct a pairwise distance matrix of size d×d. Subsequently, the neighborjoining (NJ) algorithm [2] is applied on the pairwise distance matrix to reconstruct the phylogenetic tree, where the neighbor program in PHYLIP is used. Finally, the topology of the tree is compared with the reference tree using the RobinsonFoulds (RF) distance metric, where the treedist program in PHYLIP is used to compute the RF distance between two trees. Note that the lower the RF distance is, the better the tree topology matches. In particular, if the RF distance equals zero, it means exact topology match between the two trees.
All experiments are preformed in an Apple Macbook Pro (Mid2012 model) running Mac OS 10.10.4 (OS X Yosemite). The machine features a 2.9 GHz dualcore Intel Core i73667U processor with 4MB L3 cache and 8GB RAM.
Performance comparison
As our method is closely related to kmacs, we compared the performance of ALFREDG with kmacs in terms of speed and accuracy (based on RFdistance) for different values of k, ranging from 0 to 9. Note that for k=0, both kmacs and ALFREDG are the same as the ACS method.
In the earlier work by Leimeister and Morgenstern [14], it has been show that kmacs and spacedseed [8] are superior to other alignmentfree methods, when applied to the aforementioned three datasets. Our experiments show that ALFREDG is comparable and often more accurate than kmacs, albeit involving higher computational cost. It needs to be mentioned that the comparison with spacedseed is not as straightforward as with kmacs, because spacedseed has different input parameters and requires tedious pattern templates tuning. Nevertheless, we have carefully evaluated spacedseed based on the suggestions from [8]. Our evaluation shows that spacedseed is able to recover the entire reference tree (i.e. RF distance = 0) for the prokaryotic dataset, in just 4 seconds. However, for the rest, the performance of spacedseed is roughly comparable to both ours and kmacs.
Conclusions
In this paper, we have introduced a greedy alignmentfree approach to estimating the evolutionary distance between two sequences. The core of the heuristic is to identify a 1mismatch longest substring in sequence Y that appears as a prefix of any given suffix in sequence X, and vice versa. This heuristic has been further applied to reconstruct the phylogenetic tree, given a collection of sequences that are believed to be close enough and have some evolutionary relationship between them. The performance of our heuristic has been evaluated using three real datasets: one prokaryotic dataset, one eukaryotic dataset and one protein dataset, in terms of treetopology RF score and speed. Our experimental results show that our heuristic can exactly reconstruct the same phylogenetic tree topology with the reference tree for the prokaryotic dataset, whereas kmacs cannot. On the remaining two datasets, our heuristic also demonstrates comparable or even better performance than kmacs. As for speed, our heuristic is slightly slower than kmacs.
Although our heuristic has been shown effective for phylogenetic inference, there are still some limitations that could be improved in the future. Firstly, our heuristic assumes an evolution model having only mismatches, not involving insertions or deletions, for simplicity. This model may not exactly fit the real evolutionary process given a collection of sequences. Nevertheless, our performance evaluation has shown that even though there are some insertions or deletions between sequences (observed from multiple sequence alignment), their evolutionary distances can still be estimated with reasonable accuracy using our heuristic. However, it should be noted that the existence of insertions or deletions may cause our heuristic to underestimate the similarity values, i.e. ACS _{ k }(·,·), between sequences, thus overestimating their distances, i.e. Dist _{ k }(X,Y).
Secondly, our heuristic assumes that the homologous regions between two sequences are on the same strand. Actually, this is not always the case. Given a homologous region, the substring in sequence X may have an opposite strand to the corresponding homology in sequence Y. In this case, directly applying our heuristic to such sequences may overestimate the distance, since these homologies with opposite strands are not counted in the computation of similarity values. In some sense, we would expect that the estimation accuracy of alignmentfree approaches could be further improved by incorporating support for strand differences in homologies.
Thirdly, our heuristic has only used Eq. (3) to estimate the distance from the similarity values computed from Eq. (2). Actually, we usually need to tune distance equations for different similarity computation approaches and even for similarity values in different ranges. For example, Edgar [11] used percent identity D (0≤D≤1) between two sequences as a similarity measure, but proposed to use two different distance computations depending on the value of D. In this case, Edgar computed the distance as − ln(1−D−D ^{2}/5) if D>0.25, and retrieved the distance value from a precomputed lookup table, otherwise. Hence, it may be beneficial to design some new distance computation equations that better match our approach. Finally, considering the generality and fast speed of our heuristic, we would expect that related research in bioinformatics and computational biology could benefit from our algorithm.
Notes
Declarations
Acknowledgements
This research is supported in part by the U.S. National Science Foundation grant IIS1416259. We thank the reviewers of this article and its preliminary version [33]. We also thank the authors of [29] for sharing the multiple sequence alignment file for the 32 Roseobacter genomes.
Funding
The funding for publication of the article was by the U.S. National Science Foundation grant IIS1416259.
Availability of data and material
Both dataset and code are available at http://alurulab.cc.gatech.edu/phylo.
Authors’ contributions
ST conceived the algorithm and wrote the initial manuscript; SC implemented the code and performed some experiments; YL wrote the manuscript; AK performed the experiments; SA conceptualized the study. All authors have read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Ethics approval and consent to participate
Not applicable.
About this supplement
This article has been published as part of BMC Bioinformatics Volume 18 Supplement 8, 2017: Selected articles from the Fifth IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS 2015): Bioinformatics. The full contents of the supplement are available online at https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume18supplement8.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Authors’ Affiliations
References
 Sokal RR. A statistical method for evaluating systematic relationships. Univ Kans Sci Bull. 1958; 38:1409–38.Google Scholar
 Saitou N, Nei M. The neighborjoining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406–25.PubMedGoogle Scholar
 Stewart CA, Hart D, Berry DK, Olsen GJ, Wernert EA, Fischer W. Parallel implementation and performance of fastdnamla program for maximum likelihood phylogenetic inference. In: Supercomputing, ACM/IEEE 2001 Conference. IEEE: 2001. p. 32–2.Google Scholar
 Ott M, Zola J, Stamatakis A, Aluru S. Largescale maximum likelihoodbased phylogenetic analysis on the ibm bluegene/l. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. ACM: 2007. p. 4.Google Scholar
 Liu Y, Schmidt B, Maskell DL. Parallel reconstruction of neighborjoining trees for large multiple sequence alignments using cuda. In: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium On. IEEE: 2009. p. 1–8.Google Scholar
 Zhou J, Liu X, Stones DS, Xie Q, Wang G. Mrbayes on a graphics processing unit. Bioinformatics. 2011; 27(9):1255–61.View ArticlePubMedGoogle Scholar
 Vinga S, Almeida J. Alignmentfree sequence comparisona review. Bioinformatics. 2003; 19(4):513–23.View ArticlePubMedGoogle Scholar
 Leimeister CA, Boden M, Horwege S, Lindner S, Morgenstern B. Fast alignmentfree sequence comparison using spacedword frequencies. Bioinformatics. 2014; 30(14):1991. doi:http://dx.doi.org/10.1093/bioinformatics/btu177,http://dx.doi.org/10.1093/bioinformatics/btu177.
 Blaisdell BE. Effectiveness of measures requiring and not requiring prior sequence alignment for estimating the dissimilarity of natural sequences. J Mol Evol. 1989; 29(6):526–37.View ArticlePubMedGoogle Scholar
 Wu TJ, Hsieh YC, Li LA. Statistical measures of dna sequence dissimilarity under markov chain models of base composition. Biometrics. 2001; 57(2):441–8.View ArticlePubMedGoogle Scholar
 Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004; 5(1):1.View ArticleGoogle Scholar
 Sun Y, Cai Y, Liu L, Yu F, Farrell ML, McKendree W, Farmerie W. Esprit: estimating species richness using large collections of 16s rrna pyrosequences. Nucleic Acids Res. 2009; 37(10):76–6.View ArticleGoogle Scholar
 Ulitsky I, Burstein D, Tuller T, Chor B. The average common substring approach to phylogenomic reconstruction. J Comput Biol. 2006; 13(2):336–50.View ArticlePubMedGoogle Scholar
 Leimeister CA, Morgenstern B. kmacs: the kmismatch average common substring approach to alignmentfree sequence comparison. Bioinformatics. 2014; 30(14):2000–8.View ArticlePubMedPubMed CentralGoogle Scholar
 Aluru S, Apostolico A, Thankachan SV. Efficient alignment free sequence comparison with bounded mismatches. In: International Conference on Research in Computational Molecular Biology. Springer: 2015. p. 1–12.Google Scholar
 Haubold B, Pfaffelhuber P, DomazetLoso M, Wiehe T. Estimating mutation distances from unaligned genomes. J Comput Biol. 2009; 16(10):1487–500.View ArticlePubMedGoogle Scholar
 Apostolico A, Guerra C, Landau GM, Pizzi C. Sequence similarity measures based on bounded hamming distance. Theor Comput Sci. 2016; 638:76–90.View ArticleGoogle Scholar
 Flouri T, Giaquinta E, Kobert K, Ukkonen E. Longest common substrings with k mismatches. Inf Process Lett. 2015; 115(6):643–7.View ArticleGoogle Scholar
 Manzini G. Longest common prefix with mismatches. In: International Symposium on String Processing and Information Retrieval. Springer: 2015. p. 299–310.Google Scholar
 Thankachan SV, Apostolico A, Aluru S. A provably efficient algorithm for the kmismatch average common substring problem. J Comput Biol. 2016; 23(6):472–82.View ArticlePubMedGoogle Scholar
 Thankachan SV, Chockalingam SP, Liu Y, Apostolico A, Aluru S. Alfred: a practical method for alignmentfree distance computation. J Comput Biol. 2016; 23(6):452–60.View ArticlePubMedGoogle Scholar
 Pizzi C. Missmax: alignmentfree sequence comparison with mismatches through filtering and heuristics. Algorithm Mol Biol. 2016; 11(1):1.View ArticleGoogle Scholar
 Weiner P. Linear pattern matching algorithms. In: Switching and Automata Theory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium On. IEEE: 1973. p. 1–11.Google Scholar
 Devroye L, Szpankowski W, Rais B. A note on the height of suffix trees. SIAM J Comput. 1992; 21(1):48–53.View ArticleGoogle Scholar
 Mori Y. Libdivsufsort: a lightweight suffix array construction library. 2003.Google Scholar
 Gog S, Beller T, Moffat A, Petri M. From theory to practice: Plug and play with succinct data structures. In: International Symposium on Experimental Algorithms. Springer: 2014. p. 326–37.Google Scholar
 Kasai T, Lee G, Arimura H, Arikawa S, Park K. Lineartime longestcommonprefix computation in suffix arrays and its applications. In: Annual Symposium on Combinatorial Pattern Matching. Springer: 2001. p. 181–92.Google Scholar
 Bender MA, FarachColton M. The lca problem revisited. In: Latin American Symposium on Theoretical Informatics. Springer: 2000. p. 88–94.Google Scholar
 Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, et al.Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010; 4(6):784–98.View ArticlePubMedGoogle Scholar
 Thompson JD, Koehl P, Ripp R, Poch O. Balibase 3.0: latest developments of the multiple sequence alignment benchmark. Proteins Struct Funct Bioinforma. 2005; 61(1):127–36.View ArticleGoogle Scholar
 Felsenstein J. {PHYLIP}: phylogenetic inference package, version 3.5 c. 1993.Google Scholar
 Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinforma. 2007; 8(1):1.View ArticleGoogle Scholar
 Thankachan SV, Chockalingam SP, Liu Y, Krishnan A, Aluru S. A greedy alignmentfree distance estimator for phylogenetic inference. In: International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE: 2015. p. 1–1.Google Scholar