Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics. 2006; 22(20):2523–31.

Article
CAS
PubMed
Google Scholar

Husmeier D, Werhli AV. Bayesian integration of biological prior knowledge into the reconstruction of gene regulatory networks with Bayesian networks. Comput Syst Bioinforma Life Sci Soc Comput Syst Bioinforma Conf. 2007; 6:85–95.

Article
Google Scholar

Opgen-Rhein R, Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol. 2007; 1(1):37.

Article
PubMed
PubMed Central
Google Scholar

Lèbre S. Inferring dynamic Bayesian network with low order independencies. Stat Appl Genet Mole Biol. 2009; 8(1):1–38.

Article
Google Scholar

Lèbre S, Becq J, Devaux F, Stumpf MP, Lelandais G. Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol. 2010; 4(1):130.

Article
PubMed
PubMed Central
Google Scholar

Grzegorczyk M, Husmeier D. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics. 2011; 27(5):693–9.

Article
CAS
PubMed
Google Scholar

Thorne T, Stumpf MPH. Inference of temporally varying Bayesian networks. Bioinformatics. 2012; 28(24):3298–305.

Article
CAS
PubMed
PubMed Central
Google Scholar

Thorne T, Fratta P, Hanna MG, Cortese A, Plagnol V, Fisher EM, Stumpf MPH. Graphical modelling of molecular networks underlying sporadic inclusion body myositis. Mole BioSyst. 2013; 9(7):1736–42.

Article
CAS
Google Scholar

Wang T, Ren Z, Ding Y, Fang Z, Sun Z, MacDonald ML, Sweet RA, Wang J, Chen W. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks. PLOS Comput Biol. 2016; 12(2):e1004755.

Article
PubMed
PubMed Central
Google Scholar

Hardcastle TJ, Kelly KA. baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinforma. 2010; 11(1):422.

Article
Google Scholar

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106.

Article
CAS
PubMed
PubMed Central
Google Scholar

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139–40.

Article
CAS
PubMed
Google Scholar

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550.

Article
PubMed
PubMed Central
Google Scholar

Inouye DI, Yang E, Allen GI, Ravikumar P. A review of multivariate distributions for count data derived from the Poisson distribution. Wiley Interdisc Rev Comput Stat. 2017; 4(3):e1398.

Article
Google Scholar

Allen GI, Liu Z. A Local Poisson Graphical Model for inferring networks from sequencing data. IEEE Transac NanoBiosci. 2013; 12(3):189–98.

Article
Google Scholar

Gallopin M, Rau A, Jaffrézic F. A hierarchical poisson log-normal model for network inference from RNA sequencing data. PLOS ONE. 2013; 8(10):e77503.

Article
CAS
PubMed
PubMed Central
Google Scholar

Äijö T, Butty V, Chen Z, Salo V, Tripathi S, Burge CB, Lahesmaa R, Lähdesmäki H. Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation. Bioinformatics. 2014; 30(12):i113–20.

Article
PubMed
PubMed Central
Google Scholar

Jo K, Kwon H-B, Kim S. Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress. Methods. 2014; 67(3):364–72.

Article
CAS
PubMed
Google Scholar

Christopher DLW, Penfold A. How to infer gene networks from expression profiles, revisited. Interface Focus. 2011; 1(6):857–70.

Article
Google Scholar

Penfold CA, Buchanan-Wollaston V, Denby KJ, Wild DL. Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics. 2012; 28:i233–41.

Article
CAS
PubMed
PubMed Central
Google Scholar

Meyer PE, Lafitte F, Bontempi G. minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinformatics. 2008; 9(1):461.

Article
PubMed
PubMed Central
Google Scholar

Wang Z, Ma S, Zappitelli M, Parikh C, Wang C-Y, Devarajan P. Penalized count data regression with application to hospital stay after pediatric cardiac surgery. Stat Methods Med Res. 2016; 25(6):2685–703.

Article
PubMed
Google Scholar

Carvalho CM, Polson NG, Scott JG. Handling Sparsity via the Horseshoe. AISTATS. Proc Mach Learn Res. 2009; 5:73–80.

Google Scholar

Carvalho CM, Polson NG, Scott JG. The horseshoe estimator for sparse signals. Biometrika. 2010; 97(2):465–80.

Article
Google Scholar

Koller D, Friedman N. Probabilistic Graphical Models. Cambridge: MIT Press; 2009.

Google Scholar

MacKay DJC. Developments in Probabilistic Modelling with Neural Networks —Ensemble Learning. In: Machine Learning. London: Springer London: 1995. p. 191–8.

Google Scholar

MacKay DJC. Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press: 2003.

Bishop CM. Pattern Recognition and Machine Learning. New York: Springer Verlag; 2006.

Google Scholar

Barber D. Bayesian Reasoning and Machine Learning. Cambridge: Cambridge University Press; 2012.

Google Scholar

Murphy KP. Machine Learning A Probabilistic Perspective. Cambridge: MIT Press; 2012.

Google Scholar

Luts J. Variational Inference for Count Response Semiparametric Regression. Bayesian Analysis. 2015; 10(4):991–1023, Wand, MP.

Article
Google Scholar

Knowles DA, Minka T. Non-conjugate Variational, Message Passing for Multinomial and Binary Regression. In: Proceedings of the 24th International Conference on Neural Information Processing Systems: 2011. p. 1701–9.

Winn J, Bishop CM. Variational Message Passing. J Mach Learn Res. 2005; 6(Apr):661–94.

Google Scholar

Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics. 2011; 27(16):2263–70.

Article
CAS
PubMed
Google Scholar

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature Biotechnology. 2017; 35(4):319–21.

Article
CAS
PubMed
Google Scholar

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA-K, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson Å, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Pontén F, Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular &, Cellular Proteomics. 2014; 13(2):397–406.

Article
CAS
Google Scholar

Hastie T, Efron B. lars: Least Angle Regression, Lasso and Forward Stagewise; 2013. URL https://CRAN.R-project.org/package=lars. R package version 1.2.

Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010; 33(1):1–22.

Article
PubMed
PubMed Central
Google Scholar

Grau J, Grosse I, Keilwagen J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics. 2015; 31(15):2595–7.

Article
CAS
PubMed
PubMed Central
Google Scholar

Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. New York: ACM; 2006.

Book
Google Scholar

Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, MR Swerdel, Ecclessis MFD, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife. 2013; 2:360.

Article
Google Scholar

Zhang W, Yi M-J, Chen X, Cole F, Krauss RS, Kang J-S. Cortical thinning and hydrocephalus in mice lacking the immunoglobulin superfamily member CDO. Mole Cell Biol. 2006; 26(10):3764–72.

Article
CAS
Google Scholar

Oh J-E, Bae G-U, Yang Y-J, Yi M-J, Lee H-J, Kim B-G, Krauss RS, Kang J-S. Cdo promotes neuronal differentiation via activation of the p38 mitogen-activated protein kinase pathway. FASEB J. 2009; 23(7):2088–99.

Article
CAS
PubMed
PubMed Central
Google Scholar

Jeong M-H, Ho S-M, Vuong TA, Jo S-B, Liu G, Aaronson SA, Leem Y-E, Kang J-S. Cdo suppresses canonical Wnt signalling via interaction with Lrp6 thereby promoting neuronal differentiation. Nature Communications. 2014; 5:5:w455.

Google Scholar

Mallilankaraman K, Cárdenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM, Golenár T, Csordás G, Madireddi P, Yang J, Müller M, Miller R, Kolesar JE, Molgó J, Kaufman B, Hajnóczky G, Foskett JK, Madesh M. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nature Cell Biology. 2012; 14(12):1336–43.

Article
CAS
PubMed
PubMed Central
Google Scholar

Rharass T, Lemcke H, Lantow M, Kuznetsov SA, Weiss DG, Panáková D. Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/ *β*-catenin pathway activation to facilitate cell differentiation. J Biol Chem. 2014; 289(40):7–27951.

Article
Google Scholar