Skip to content

Advertisement

  • Methodology article
  • Open Access

DeviCNV: detection and visualization of exon-level copy number variants in targeted next-generation sequencing data

  • 1, 2,
  • 1,
  • 1,
  • 3,
  • 4,
  • 5,
  • 6,
  • 3Email author and
  • 1Email author
BMC Bioinformatics201819:381

https://doi.org/10.1186/s12859-018-2409-6

  • Received: 9 July 2018
  • Accepted: 4 October 2018
  • Published:

Abstract

Background

Targeted next-generation sequencing (NGS) is increasingly being adopted in clinical laboratories for genomic diagnostic tests.

Results

We developed a new computational method, DeviCNV, intended for the detection of exon-level copy number variants (CNVs) in targeted NGS data. DeviCNV builds linear regression models with bootstrapping for every probe to capture the relationship between read depth of an individual probe and the median of read depth values of all probes in the sample. From the regression models, it estimates the read depth ratio of the observed and predicted read depth with confidence interval for each probe which is applied to a circular binary segmentation (CBS) algorithm to obtain CNV candidates. Then, it assigns confidence scores to those candidates based on the reliability and strength of the CNV signals inferred from the read depth ratios of the probes within them. Finally, it also provides gene-centric plots with confidence levels of CNV candidates for visual inspection. We applied DeviCNV to targeted NGS data generated for newborn screening and demonstrated its ability to detect novel pathogenic CNVs from clinical samples.

Conclusions

We propose a new pragmatic method for detecting CNVs in targeted NGS data with an intuitive visualization and a systematic method to assign confidence scores for candidate CNVs. Since DeviCNV was developed for use in clinical diagnosis, sensitivity is increased by the detection of exon-level CNVs.

Keywords

  • Copy-number variation
  • Targeted sequencing
  • Visualization
  • Germ-line
  • Exon-level

Background

Targeted next-generation sequencing (NGS) is increasingly being adopted in clinical laboratories for genomic diagnostic tests [16]. In addition to single-nucleotide and short insertion/deletion variants (SNVs and INDELs), copy number variants (CNVs) have been implicated as the cause of many human diseases [7, 8] such as HIV [9], rheumatoid arthritis [10], Crohn’s disease [11], psoriasis [12], cancers [13, 14], and inherited rare diseases [15, 16]. However, accurately detecting CNVs in targeted NGS data is challenging because the depth of coverage of targeted NGS data is highly variable over target regions, and regions near breakpoints may not be sequenced [7, 1722].

For NGS-based CNV detection, there are two major approaches: read-depth and paired-ends mapping methods [13, 2328]. Read-depth based methods detect a CNV by comparing the observed number of mapped reads with the expected number of mapped reads in a genomic interval [29]. The calculation of the expected number of mapped reads in a genomic interval assumes a neutral copy number in that interval. Paired-ends mapping based methods identify a CNV by looking for concordantly mapped paired-ends reads whose insert sizes are deviated significantly from the distribution of insert sizes in a sequencing library [19].

In general, paired-ends based methods can predict CNV breakpoints more precisely [19], but it is difficult to apply these methods to targeted NGS data because genomic regions near breakpoints are difficult to sequence. Read-depth based methods are more frequently applied to targeted NGS data because they are less affected by the above limitation. However, currently available read-depth based methods suffer from high false positive predictions, especially on detection of small CNVs spanning only one or a few exons, which may be a hurdle for the adoption of these methods in clinical diagnosis [4]. Because small CNVs have been casually implicated in many inherited disorders [30], accurate detection of small CNVs is important in improving the diagnostic performance of targeted NGS based clinical tests.

For the clinical use of targeted NGS, visual inspection of the detected variants in the regions of genes suspected to be responsible for the disease of a given patient is a crucial step before clinical interpretation [1]. Visual inspection allows for selection of variants that are worth further validation with orthogonal methods such as qPCR, and lowers the risk of missing true pathogenic variants such as CNVs that might be difficult to detect with conventional methods. The latter is especially important for genes that are clinically relevant to the phenotype of a given patient or that have a pathogenic heterozygous sequence variant in recessive Mendelian disorders.

Here, we developed a new method, DeviCNV, to meet the two clinical requirements for CNV detection using targeted NGS data: 1) the detection of CNVs with exon-level resolution, and 2) the support of intuitive visualization for the assessment of CNVs. To meet the first requirement, we attempted to fully exploit detailed CNV signals from target capture probes for gene panels. Probe level data, which even a single exon can have multiple, allow DeviCNV to assign confidence scores to the CNV candidates based on the reliability and strength of the CNV signals calculated from the multiple probes. It also provides gene-centric view plots with confidence levels of the CNV candidates of a gene. The gene-centric view plots show the read-depth ratios of the probes within the gene with their confidence intervals and the probabilities of their read depth ratios being outside the ranges of copy neutral.

Results

Dataset and parameter setting

We sequenced 27 cell lines with inherited genetic disorders obtained from the NHGRI Sample Repository for Human Genetic Research at the Coriell Institute for Medical Research as targeted NGS data: lymphoblastoid cell lines/DNA samples from adrenal hyperplasia patients (NA11781, NA12217, NA14734, GM14734), a galactosemia patient (GM17433), a type I gaucher disease patient (NA10874), glycogen storage disease II patients (GM14011, GM14259, GM14603), a krabbe disease patient (NA06805), lesch-nyhan syndrome patients (NA01899, NA06804), transcarbamylase deficiency patients (GM23431, GM23891, GM24007), phenylketonuria patients (NA02659, NA11195), propionic academia patients (NA22208, NA22496, NA22555, GM23221) and as a control sample (NA12878), and fibroblasts cell lines/DNA samples from a galactosemia patient (NA01741), a type I gaucher disease patient (NA00852), a lesch-nyhan syndrome patient (NA02227) and phenylketonuria patients (NA00006, NA02406). Eight of them are known to have pathogenic CNVs. We used those pathogenic CNVs as a standard answer set for parameter optimization of DeviCNV. These 27 cell lines were sequenced using target gene panels IMD_HYB, IMD_PCR, or both (Table 1). Both IMD_HYB and IMD_PCR are target gene panels for NGS designed for identifying genetic variants responsible for newborn screening disorders. IMD_HYB and IMD_PCR are developed with hybridization-based and PCR-based target enrichment technologies respectively. All the sequencing data for these cell lines were submitted to the NCBI Short Read Archive databank (SRA, http://www.ncbi.nlm.nih.gov/sra) under accession number SRP103698 (SRA).
Table 1

Summary of the dataset used for retrospective and clinical analyses

Gene panel name

Capture method

Number of target genes

Probes (or amplicons)

Probe coverage size

Average number of probes per exon

Clinical use

Number of samples

IMD_HYB

Hybridization

(HiSeq)

259

19210

982,657 bps

5.7

Newborn screening

30a (cell line)

36 (clinical)

IMD_PCR

PCR

(Ion S5)

259

9072

(3 pools)

1,216,913 bps

2.7

Newborn screening

14 (cell line)

20 (clinical)

IMD_V1

PCR

(Ion PGM)

97

2054

(2 pools)

338,961 bps

1.8

Newborn screening

178 (clinical)

IMD inherited metabolism disorder, HYB hybridization-based capture approach, PCR polymerase chain reaction-based capture approach, bps base pairs

a27 unique cell line. Total 30 samples were sequenced because two cell lines were generated 3 times respectively

The average of mean target depths for these cell lines were 174X for the IMD_HYB dataset and 301X for the IMD_PCR dataset (Table 2). As for the minimum of mean target depth of a sample eligible for CNV detection, we recommend 100X for the IMD_HYB dataset and 150X for the IMD_PCR dataset (Additional file 1: Note S1). Another aspect of the quality of targeted NGS data of a sample is measured by coefficients of correlation of read depth values of probes with the other samples within the same sequencing batch (described in the Method section). We excluded a sample in CNV detection if the sample has low coefficients of correlation with the other samples.
Table 2

Summary of cell lines and clinical cohorts

Panels

IMD_HYB

IMD_PCR

IMD_V1

Batches

3

2

Unknown

Samples

30a (cell line)

36 (clinical)

14 (cell line)

20 (clinical)

178 (clinical)

Average depth of coverage

174X

345X

301X

349X

87X

Samples passing QC

24

35

14

19

172

Failure rate

20%

2.8%

0%

5%

3.4%

Median number of raw duplications

52.5

8

35.5

29

22.5

Median number of raw deletions

22.5

3

37

23

9

Median number of raw CNVs

82

13

85.5

67

34.5

Median number of 5-scoreb duplications

4.5

1

12

5

6

Median number of 5-score deletions

2

0

5.5

2

1

Median number of 5-score CNVs

6.5

1

24.5

7

7.5

QC quality control, CNV copy number variation, IMD inherited metabolism disorder, HYB hybridization-based capture approach, PCR polymerase chain reaction-based capture approach

a27 unique cell line. Total 30 samples were sequenced because two cell lines were generated 3 times respectively

bHigh-confidence CNVs received the highest score of 5

Because DeviCNV aims to detect exon level CNVs with high sensitivity, it keeps every CNV candidates by categorizing with their confidence score rather than hard filtering of low confidence CNV candidates. To measure the confidence score, we introduce the five criteria which reflect the reliability and strength of CNV signals of the candidates (Table 3): 1) ProbeCntInRegion, 2) AverageOfReadDepthRatios, 3) STDOfReadDepthRatios, 4) AverageOfCIs, and 5) AverageOfR2vals. These criteria consider the number of probes, the strength of CNV signals, the stability of read depth ratios, and reliability of regression models among the probes within a CNV candidate region.
Table 3

Description of the measures used in the DeviCNV scoring system

Abbreviation

Description

Calculation method

Default parameter setting

ProbeCntInRegion

How many signals support the CNV candidate?

Counting read depth ratio signals for a CNV candidate

1 point for ≥2

AverageOfReadDepthRatios

How strong is the signal supporting the CNV candidate?

Calculating an average log2-transformed median predicted probe-level read depth ratio values for a CNV candidate

If deletion, 1 point for < log2(0.6);

If duplication, 1 point for > log2(1.4)

STDOfReadDepthRatios

How stable are the signals supporting the CNV candidate?

Calculating a standard deviation for the log2-transformed median predicted probe-level read depth ratio values for a CNV candidate

1 point for < 0.4

AverageOfCIs

How small are the confidence intervals for the signals supporting the CNV candidate?

Calculating average log2-transformed 95% confidence interval lengths for predicted probe-level read-depth ratios for a CNV candidate

1 point for < 0.4

AverageOfR2vals

How reliable is the model that generated the signals that support the CNV candidate?

Calculating average mean R-squared values per probe for a CNV candidate, with the average R-squared value per probe referring to an average of the R-squared values of N models for one probe

1 point for ≥0.85

CNV copy number variant, CI confidence interval

DeviCNV counts how many of the above criteria are satisfied for each CNV candidate. For each criterion, we selected the thresholds or conditions by minimizing the number of CNV candidates satisfying the criterion, while all the known pathogenic CNVs are preserved. We excluded deletions in CYP21A2 because the deletions in the gene is known to be challenging to detect with NGS data due to its pseudogene and copy number polymorphisms [31]. The default thresholds and conditions for those criteria are shown in Table 3. If a CNV candidate satisfies all the above five criteria, it scores 5. The CNV candidates with the highest score are considered as the top priority for visual inspection.

Concordance with qPCR of CNV candidates detected from DeviCNV

To evaluate the performance of DeviCNV, we performed qPCR on the subset of CNV candidates with confidence score of 5 from the IMD_HYB dataset. The subset was selected from 11 cell lines with the number of CNV candidates of score 5 less than 10, which resulted in a total of 40 CNV candidates (27 duplications and 13 deletions). Apart from four already known pathogenic CNVs, 36 CNV candidates were tested by qPCR (Additional file 1: Note S2), and 11 out of the 27 duplications, and five out of the nine deletions were confirmed by qPCR. In addition, we randomly selected 25 of the 497 CNV candidates with confidence score of 4 from the above 11 cell lines. Of these 25 CNVs, 6 out of the 16 duplicates and 3 out of the 9 deletions were also confirmed by qPCR (Additional file 1: Note S2). As a summary, the concordance rates of 5-score CNV candidates and 4-score CNV candidates were 44% (16 out of 36) and 36% (9 out of 25) respectively.

Comparison with other tools

We compared DeviCNV’s germline exon-level CNV detection performance with VisCap [1], XHMM [2], and CODEX [27] using the IMD_HYB dataset and the IMD_PCR dataset.

From the IMD_HYB dataset and the IMD_PCR dataset, DeviCNV, VisCap, XHMM, and CODEX could each detect 11, eight, eight, and eight out of 14 known CNVs (eight known CNVs from the IMD_HYB dataset and six known CNVs from the IMD_PCR dataset) respectively (Table 4). Notably, DeviCNV is the only tool which found all the small CNVs spanning over four or less exons: the deletion of exon 18 of GAA from GM14603, and the duplication of exon 2 and 3 of HPRT1 from NA06804. As for the total number of CNV candidates, DeviCNV was comparable with a median of 9.5 CNV candidates per sample. The other tools VisCap, XHMM, and CODEX generate a median of 15.5, 2.0, and 26.0 CNV candidates per sample, respectively.
Table 4

Comparison of the performances of DeviCNV and previous tools using cell lines with known CNVs

Sample

Known CNV

DeviCNV

VisCap

XHMM

CODEX

Panel

Cell line

Median read depth

Gene

NM

CNV

CNV size (kb)

Find?a

#CNVb

Find?

#CNV

Find?

#CNV

Find?

#CNV

IMD_HYB

GM14603

81.99

GAA

NM_000152

EX18 DEL

0.16

O

24

X

7

X

0

X

56

GM14734

249.4

CYP21A2

NM_000500

30 KB DEL, Entire gene DEL

3.35

O

2

O

37

O

1

X

2

GM24007

142.84

OTC

NM_000531

Entire gene DEL

68.97

O

7

O

14

O

3

O

46

NA01741

164.4

GALT

NM_000155

Entire gene DEL

4.01

O

6

O

40

O

1

O

37

NA06804

261.98

HPRT1

NM_000194

EX2–3 DUP

2.01

O

34

O

43

X

2

O

62

NA06805

80.13

GALC

NM_000153

EX11–17 DEL

17.73

O

44

O

8

O

1

O

86

NA12217

269.08

CYP21A2

NM_000500

30 KB DEL

1.14

X

1

X

7

X

3

X

11

NA22208

199.64

PCCA

NM_000282

EX13–20 DEL

146.38

O

3

O

17

O

2

O

15

IMD_PCR

NA01741

Pool 1: 408.0, Pool 2: 556.0, Pool 3: 271.0

GALT

NM_000155

Entire gene DEL

4.01

O

10

O

9

X

0

O

1

NA12217

Pool 1: 192.0, Pool 2: 117.0, Pool 3: 99.0

CYP21A2

NM_000500

30 KB DEL

1.14

X

37

X

22

X

8

X

71

GM14603

Pool 1: 215.0, Pool 2: 141.0, Pool 3: 90.0

GAA

NM_000152

EX18 DEL

0.16

O

25

X

32

O

6

O

40

NA14734

Pool 1: 359.0, Pool 2: 275.0, Pool 3: 335.0

CYP21A2

NM_000500

30 KB DEL, Entire gene DEL

3.35

O

9

O

12

O

4

X

12

NA22208

Pool 1: 235.0, Pool 2: 99.0, Pool 3: 158.0

PCCA

NM_000282

EX13–20 DEL

146.38

O

27

X

13

O

4

O

12

GM24007

Pool 1: 37.0, Pool 2: 20.0, Pool 3: 16.0

OTC

NM_000531

Entire gene DEL

68.97

X

1

X

23

X

0

X

0

CNV copy number variation, IMD inherited metabolism disorder; HYB hybridization-based capture approach, PCR polymerase chain reaction-based capture approach, EX exon, DEL deletion, DUP duplication

aIndicates whether a known CNV was found using each tool. “O” means all CNVs were found, and “X” means they were not found at all

bindicates the number of CNV candidates found in the corresponding sample. For DeviCNV, the number of CNV candidates that received the highest score of 5 is indicated

We also evaluated how many of the 5-score CNVs confirmed by qPCR could be detected with other methods. Among 16 CNVs validated with qPCR, VisCap, XHMM, and CODEX could detect two, two, and five CNVs, respectively. (Table 5 and Additional file 1: Note S3). Most of those 16 CNVs are consists of one or two exons implying DeviCNV can detect CNVs that only span over a length of one or two exons which the other tools did not detect well.
Table 5

Comparison of the performances of DeviCNV and previous tools using 16 CNVs confirmed by qPCR

Sample

qPCR confirmed CNV

DeviCNV

VisCap

XHMM

CODEX

Sample

Median read depth

Gene

NM

CNV

CNV size (kb)

GM17433

82.13

CPT1A

NM_001876

EX10 DUP

0.20

Oa

X

X

X

CD3E

NM_000733

EX4 DEL

0.01

O

X

X

O

GATM

NM_001482

EX9 DUP

1.10

O

X

X

X

GM24007

142.84

PTPRC

NM_002838

EX16–17

0.83

O

X

X

O

LMBRD1

NM_018368

EX12 DUP

0.10

O

X

X

X

SLCO1B3

NM_019844

EX4 DUP

0.14

O

X

X

O

PAH

NM_000277

EX5 DEL

0.07

O

O

X

X

NR0B1

NM_000475

EX1 DEL

1.18

O

O

X

O

NA00852

204.09

HBA2

NM_000517

EX2–3 DEL

0.59

O

X

O

X

NA01741

164.4

TG

NM_003235

EX20 DUP

0.22

O

X

X

X

TG

NM_003235

EX 21 DUP

0.15

O

X

X

X

NA02227

278.98

CYP21A2

NM_000500

EX10 DUP

0.80

O

X

X

X

NA02659

608.46

HBA2

NM_000517

EX3 DEL

0.24

O

X

O

X

NA12217

269.08

GBA

NM_001005741

EX12–11 DUP

0.86

O

X

X

X

NA22496

137.24

GUSB

NM_000181

EX11 DUP

0.14

O

X

X

X

G6PC

NM_000151

EX2 DUP

0.11

O

X

X

O

CNV copy number variation, EX exon, DEL deletion, DUP duplication

aIndicates whether a known CNV was found using each tool. “O” means all CNVs were found, and “X” means they were not found at all

Identification of pathogenic CNVs associated with inherited metabolic disorders

We used DeviCNV to detect CNVs in clinical samples suspected of having inherited metabolic disorders. We collected clinical samples from three cohorts (Table 2 and Additional file 1: Note S4).

In total, we sequenced 45 clinical samples using either IMD_HYB or IMD_PCR or both. Of these 45 samples, 36 samples were sequenced with IMD_HYB with an average of mean target depths of 345X, while 20 samples were sequenced with IMD_PCR with an average of mean target depths of 349X. From the results of DeviCNV, our clinical reviewers selected the five CNV candidates for further validation by integrating the sequence variants (SNVs and INDELs) and clinical information of patients (Additional file 1: Note S5). Among the five selected CNV candidates, four CNVs were confirmed by qPCR (Table 6 and Fig. 1).
Table 6

Candidate pathogenic CNVs detected by clinical sample analysis using DeviCNV

Sample

CNV candidates after scoringa

Selected pathogenic CNVsc

Panel

Sample

Median

read depth

Raw CNVb

Score 5

Score 4

Score 3

Score 2

Score 1

Score 0

Gene

NM

CNV

CNV size (kb)

Confirmed by qPCR

IMD_HYB

Case_01

273.3

49

2

22

20

5

0

0

ACADVL

NM_000018

EX2 DEL (Score 4)

0.08

Failed

Case_02

341.4

12

7

3

2

0

0

0

ASL

NM_000048

EX15 DEL (Score 5)

0.08

Confirmed

Case_03

276.8

25

5

18

2

0

0

0

GYS2

NM_021957

EX6–11 DEL (Score 5)

5.15

Partially confirmed (EX6–7, 10–11)

IMD_PCR

Case_04

Pool 1: 174.0 Pool 2: 203.0 Pool 3: 185.0

82

26

46

9

1

0

0

ETFDH

NM_004453

EX1–7 DEL (Score 5)

23.51

Confirmed

Case_05

Pool 1: 228.0 Pool 2: 330.0 Pool 3: 185.0

145

63

74

8

0

0

0

ETFDH

NM_004453

EX7–8 DEL (Score 5)

2.20

Confirmed

IMD_V1

Case_06

Pool 1: 69.0 Pool 2: 56.0

106

37

40

26

3

0

0

OTC

NM_000531

EX2 DEL (Score 5)

0.14

Confirmed

Case_07

Pool 1: 52.0 Pool 2: 51.0

65

23

23

14

5

0

0

OTC

NM_000531

Entire gene DEL (Score 5)

68.38

Confirmed

CNV copy number variation, IMD inherited metabolism disorder; HYB hybridization-based capture approach, PCR polymerase chain reaction-based capture approach, EX exon, DEL deletion, DUP duplication, qPCR quantitative polymerase chain reaction

aIndicates the number of CNV candidates for each score

bindicates the number of all CNV candidates before scoring

cindicates the selected pathogenic CNVs identified in the clinical sample by one expert. The number in parentheses indicates the score of the selected CNV

Fig. 1
Fig. 1

Gene-centric view plots for four selected clinical cases. Panels A–D contain four examples of gene-centric view plots for the pathogenic CNVs detected in clinical samples shown in Table 6. a A single exon deletion within ASL, b a multi-exon deletion within GYS2 using the inherited metabolic disorder panel and hybridization capture approach, c a multi-exon deletion within ETFDH using the inherited metabolic disorder panel and polymerase chain reaction-based capture approach, and d an entire gene deletion within OTC using the previous version of the inherited metabolic disorder panel and polymerase chain reaction-based capture approach

We also analyzed 178 samples sequenced using IMD_V1, previous version of IMD_PCR (Table 2), which had an average of mean target depths of 87X. We ran DeviCNV on 172 samples that passed the quality control, as an input set because lacking sequencing batch information. Our clinical reviewers chose two CNVs for further validation, and these were all confirmed by qPCR.

Discussion

DeviCNV was optimized with the known pathogenic CNVs whose parameters are set to detect all the known CNVs except for deletions of CYP21A2. It was further evaluated by qPCR for the high confidence CNV candidates generated with DeviCNV. We observed that the quality of sequencing of samples are critical to reduce the number of CNV candidates while retaining the true CNVs. Thus, we suggest the minimum requirement of the input samples for the proper use of DeviCNV. We also used DeviCNV on clinical samples, and successfully identified six disease-associated CNVs (Table 6) that leads to conclusive clinical diagnosis.

Conclusion

Although targeted NGS is becoming a major diagnostic and screening method to detect genomic variants, it still is challenging to detect CNVs in targeted NGS data with confidence. Here, we propose a new pragmatic method for detecting CNVs in targeted NGS data that includes visualization functionality and confidence scores for clinical interpretation. Since DeviCNV was developed with the intention of use in clinical diagnosis, sensitivity was emphasized for the detection of exon-level CNVs. We developed two submodules of DeviCNV to be used with two popular targeted NGS approaches: hybridization- and PCR-based capture approaches. DeviCNV provides visualization plots that support the clinical interpretation of the clinical reviewer by offering confidence levels that reflect the quality of the sequencing data of a sample, the reliability of the regression models for probes and their read depth ratios. By integrating sequence variants and novel CNVs detected by DeviCNV, our clinical reviewers could make conclusive diagnosis for several patients.

Methods

Overview of DeviCNV

DeviCNV can be divided into three main components: 1) calculation of the probe (or amplicon)-level ratio of the observed and estimated read depth based on linear regression models of the read depth of a probe and the median read depth values of all probes in a sample, 2) generation of CNV candidates by applying a circular binary segmentation (CBS) algorithm to the read depth ratios of probes, and assigning confidence scores for them with the five scoring criteria based on the probe-level CNV signals within candidates, and 3) visualization of the CNV candidates with confidence information for easier visual inspection.

To calculate the probe-level read depth ratios, we implemented two submodules to be used in two popular NGS target enrichment approaches: hybridization- and polymerase chain reaction (PCR)-based capture approaches (Fig. 2). Hereafter, we use the terms “probe” and “amplicon” interchangeably without the loss of generality with respect to the calculation of read depth ratio for a target capture interval.
Fig. 2
Fig. 2

DeviCNV workflow. Analysis-ready BAM files were used for DeviCNV input. After read-depth normalization for chromosome X, DeviCNV filters low-quality samples from the input dataset. Then, DeviCNV builds N (1,000 by default) linear regressions per probe (or amplicon) to predict a read-depth ratio and confidence interval per probe for each sample. By combining signals of probe-level read-depth ratios, DeviCNV calls raw CNV candidates and evaluates them using a new scoring system. Finally, DeviCNV provides a CNV candidate list and visualization plots for each sample and gene

Input for DeviCNV

DeviCNV requires three inputs: 1) binary alignment/map (BAM) formatted files for a set of samples, 2) a tab delimited text file that contains the genomic position of target capture probes or amplicons with their primer/probe pool information, and 3) the genders of the samples. Because DeviCNV uses linear regression models to estimate probe-level read depth ratios, a minimum number (≥ 6) of samples is recommended to build the models properly (Additional file 1: Note S6). Using BAM files of samples from a batch of sequencing run is also recommended to rule out batch effects (Additional file 1: Note S7).

Calculating probe level read depth

Many previous studies have used individual exons or unified regions merged with overlapping probes as units for calculating read depth. However, these approaches overlook the usefulness of the detailed probe-level signals which may be helpful in determining the confidence of CNV candidates [23]. Our premise of using probe-level signals for calling CNVs is that if there are CNV signals from multiple probes for a candidate, then we could give more confidence to the candidate even in a single exon sized CNV. Therefore, DeviCNV uses each individual probe as units to detect CNV signals, rather than individual exons or unified regions as units (Additional file 1: Note S8).

To calculate probe-level read depth, DeviCNV counts the number of sequencing reads mapped to a probe region with a mapping quality value (MQV) threshold. However, we observed that there is no recognizable difference in terms of performance between the default MQV ≥ 0 and the MQV ≥ 20 (Additional file 1: Note S9).

The two submodules for calculating probe-level read depth are described as followed:
  • PCR based capture-specific approach. Most sequencing reads can be assigned to an amplicon from which sequencing reads were generated from. For a given sequencing read, DeviCNV selects the amplicon that overlaps most with the aligned genomic interval. If two or more amplicons have the same overlap ratio for the sequencing read, the smallest amplicon among them is assigned.

  • Hybridization based capture-specific approach. In hybridization based targeted NGS, sequencing reads captured by a target capture probe originated from many physically different molecules, resulting in different alignment for those sequencing reads. Therefore, it is not trivial to determine which target capture probe was a bait for a sequencing read. For this reason, DeviCNV uses the average of per-base depth of coverage within a target capture probe region as the reads depth for that target capture probe.

X chromosome normalization

To adjust for the different number of X chromosomes in males and females, DeviCNV normalizes the probe-level read depth on the X chromosome by dividing by two in case of females.

Low-quality sample filtering

In addition to the mean target depth as a quality control for a sample, we calculated coefficients of correlation of its probe level reads depth with those of other samples. To determine the threshold for low quality samples, we investigated the relationship between the coefficients of correlations of a sample with the other samples and the number of segments generated during the CBS with the read depth ratios for the sample (Additional file 1: Note S10). Finally, we excluded a sample for CNV calling if its top quadrant of coefficients of correlations are below 0.7.

Building linear regression models with bootstrapping

In principal, DeviCNV uses a linear regression model to predict an expected read depth of a probe of a sample with the median of read depth values of all probes in the sample as a predictive variable. To generate empirical distribution of expected read depth of a probe in each sample, DeviCNV builds N linear regression models with N resampling with replacement. Then, it calculates N read depth ratios between the observed read depth and the N expected read depths. Our rationale for using linear regression models is that the read depth of a probe for a given sample should be proportional to a representative quantity of sequencing depth for the sample, if its copy number is neutral. By default, the number of resampling N is set to 1000. The 95% confidence interval of the expected read depth is obtained from this process.

During the building process of N linear regression models, DeviCNV identifies low-quality probes that cannot be used in calling CNV deletion which are categorized into faulty probes, faulty sample of the probe, and low R-squared value probe.

Faulty probe

Negative value among the slopes of regression models for a probe during the bootstrapping indicates read depth of the probe does not follow the assumption of proportional relationship between read depth values of the probe and sequencing depths of samples. The results from faulty probes are not considered when calling CNVs across all samples.

Faulty sample of the probe

Negative value among the expected read depth values of a probe in a sample during the bootstrapping indicates that the median of read depth values of all probes in a sample is too low to calculate the read depth ratio reliably in the regression models of the probe. Thus, for a given sample, the results from those probes are not considered for CNV calling.

Low R-squared value probe

Average R-squared value of the N regression models of a probe under 0.8, indicates the computed linear regression models are not reliable enough to be used in CNV calling. These results are not considered for CNV calling across all samples.

Calculating read depth ratio per target capture probe

For a given target capture probe t, let Yt = (yt, 1, yt, 2, …, , yt, K) be the read depth of the probe t observed from the targeted NGS data of the K samples. Median of read depth values of all probes in each sample is denoted as M = (m1, m2, …, mK). Then, we build N linear regression models between M (independent variable) and Yt (response variable) by resampling with replacement. We denote the N fitted linear regression models of the probe t as Ft = (ft, 1, ft, 2, …, ft, N). From each fitted linear regression model, we can estimate the read depth of a probe t at sample k by the nth model with the equation \( {\overset{\sim }{y}}_{t,k,n}={f}_{\mathrm{t},\mathrm{n}}\left({m}_{\mathrm{k}}\right) \). Then, we calculate the read depth ratio of the observed read depth and the estimated read depth by \( {r}_{t,k,n}=\frac{y_{t,k}}{{\overset{\sim }{y}}_{t,k,n}} \). Finally, we can get N of read depth ratio estimates which we denote as Rt, k = (rt, k, 1, …, rt, k, N) .

To measure the significance of CNV signal from Rt, k, probability of a CNV event is calculated from the fraction of how many read-depth ratios among its N read depth ratios are deviated from the range of copy neutral defined as (TH.del, TH.dup) where TH.del and TH.dup are the thresholds for deletion and duplication, respectively. The default value is 0.7 for TH.del and 1.3 for TH.dup (Additional file 1: Note S11). Finally, we selected the probes whose probability of a CNV event is greater than 0.5.
$$ p.{dup}_{\left(t,k\right)}=\frac{\mathbf{n}\left({r}_{t,\mathrm{k},n}>\mathrm{TH}.\mathrm{dup}\right)}{\mathrm{N}} $$
$$ \mathrm{If}\ p.{dup}_{\left(t,k\right)}>0.5,\mathrm{then}\ {C}_{\left(t,k\right)}=\mathrm{duplication} $$
$$ p.{del}_{\left(t,k\right)}=\frac{\mathbf{n}\left({r}_{t,k,n}<\mathrm{TH}.\mathrm{del}\right)}{\mathrm{N}} $$
$$ \mathrm{If}\ p.{del}_{\left(t,k\right)}>0.5,\mathrm{then}\ {C}_{\left(t,k\right)}=\mathrm{deletion} $$

(Otherwise,) C(t, k) = neutral

where C(t, k) is the copy number status (duplication/neutral/deletion) for sample k with target capture probe t.

Calling CNVs

To segment a profile of sample’s read depth ratios for a gene, we used a circular binary segmentation (CBS) method [32]. The profile used in CBS was generated with the medians of Rt, k of the probes within a gene. For computational convenience, we set the upper limit of the read depth ratios of the profile as 16.
$$ {P}_{\left(t,k\right)}=\mathrm{median}\left({R}_{t,k}\right) $$
$$ \mathrm{If}\ {P}_{\left(t,k\right)}>16,\mathrm{then}\ {P}_{\left(t,k\right)}=16 $$

Thereafter, the profiles are partitioned into segments of similar read depth ratios, and the copy number status of a segment are determined by the average read depth of probes within the segment. After that, adjacent segments are merged hierarchically to form a larger CNV candidate if they have the same copy number status.

However, it is difficult to detect small size changes using the above CBS. To address this issue, we added duplication or deletion regions covered by two or more consecutive strong probe-level CNV signals to increase the sensitivity of our method. For each CNV candidate generated from the above, its copy number and CNV length are calculated. We estimated the copy number by the average of the copy numbers of probes inferred from their read-depth ratio. Because the exact breakpoints of CNV candidates cannot be determined with DeviCNV, the start/end genomic position or length of the CNV candidates are annotated based on the probe information provided by the user. Additionally, DeviCNV annotates the CNV type, sample name, and median of reads depth of each probe/primer pool, the genomic position of the CNV candidate, and confidence information for the predicted reads depth ratios supporting the candidate.

Scoring CNVs

To detect CNVs with high specificity, DeviCNV evaluates all CNV candidates using the following five scoring criteria (Table 3 and Additional file 1: Note S12) to determine confidence levels. To define the thresholds or condition for each criterion, we used the IMD_HYB dataset and the IMD_PCR dataset from eight cell lines with known CNVs. The five scoring criteria are as followed: 1) ProbeCntInRegion: the number of probes within the CNV candidate, 2) AverageOfReadDepthRatios: the average of reads depth ratios of probes within the CNV candidate, 3) STDOfReadDepthRatios: the standard deviation of the read depth ratio of the probes within the CNV candidate, 4) AverageOfCIs: The average length of 95% confidence interval of read-depth ratios of the probes within the CNV candidate, and 5) AverageOfR2vals: the average of average R-squared values of the linear regression models for probes within the CNV candidate. If a CNV candidate passes each criterion, one point is assigned; then, the CNV candidates that scored 5 points are designated as final CNV candidates. More detailed descriptions of the threshold for each criterion are provided in Additional file 1: Note S12.

Visualization

DeviCNV allows visualization of CNV results as graphical plots with predicted read-depth ratios. There are two types of plots: a whole-genome view plot for the whole gene showing the overall result for one sample across whole genes (Fig. 3a), and the gene-centric view plots containing detailed information (Fig. 3b). In the plot, grey dotted lines indicate duplication/deletion thresholds. The shape of points in the plot indicates different primer/probe pool and if the probes are faulty or low-quality. The red-white gradient indicates the p-value which is defined by 1 − p. dup(t, k) or 1 − p. del(t, k) for a given target probe t in the k sample. A 95% confidence interval for the predicted read-depth ratio is also displayed that indicates the reliability of each result. By displaying various parameters on this graph, users can check the results directly and easily.
Fig. 3
Fig. 3

Example of DeviCNV plots. Predicted read-depth ratios (observed read depth/predicted read depth) of probes on a panel plotted on a log2 scale for each sample: a the whole-genome view plot depicts all probes on a panel, and b the gene-centric view plot depicts the probes within a gene. Each point represents the read-depth ratio for each probe, and its shape indicates the pool or an assessment of faulty or low-quality types that are classified when building the linear regression models. The color of each point shows the p-value for duplications and deletions (the thresholds are set at 1.3 and 0.7, thin black dotted lines). The whiskers represent the 95% confidence interval for the read-depth ratio. This is an example of a multi-exon deletion within CYP21A2 found in a cell line using the inherited metabolic disorder panel and the hybridization capture approach

Generation of targeted NGS datasets

We evaluated DeviCNV using four targeted NGS datasets sequenced for use in clinical research (Table 1). First, we used our IMD (inherited metabolism disorders) gene panels that were developed using two different capture approaches: hybridization-based capture (IMD_HYB) and PCR-based capture (IMD_PCR) (Additional file 1: Note S13). The IMD_HYB panel consisted of 19,210 probes. The IMD_PCR panel consisted of 9072 amplicons separated into three pools to prevent reactions between primers. We sequenced targeted NGS data derived from both IMD_HYB and IMD_PCR capture assays, followed by sequencing using HiSeq (Illumina, San Diego, CA, USA) and Ion S5 (Thermo Fisher Scientific, Waltham, MA, USA) platforms. We sequenced a total of 96 targeted NGS datasets from 72 unique samples (27 cell lines and 45 clinical samples). Secondly, we used our previous version of the IMD panel, IMD_V1, developed using only for the PCR-based capture method. This panel consists of 2054 amplicons in two pools, and a total of 178 clinical datasets were sequenced using the Ion Torrent Personal Genome Machine (PGM) system (Thermo Fisher Scientific, Waltham, MA, USA).

For each sample data sequenced using the hybridization-based method, the targeted NGS data were aligned to the human reference genome (hs37d5) using BWA 0.7.12 [33], Picard 1.139 tools (http://broadinstitute.github.io/picard/) were applied to sort and mark duplicated reads, and the Genome Analysis Toolkit (GATK) 3.4.46 [34] was applied for recalibration and indel realignment, according to the GATK Best Practices guidelines [35]. The data sequenced using the PCR-based approach were processed with standard Ion Torrent Suite™ Software, and the Torrent Server was used for alignment (Additional file 1: Note S14).

Running parameters of other tools for the performance comparison

For VisCap, we set iqr_multiplier at 1.1 and threshold.cnv_log2_cutoffs at (log2 [0.7], log2 [1.3]) to maximize sensitivity because our DeviCNV parameters were set for maximum sensitivity detection, whereas, for other parameters, the default settings were used. In addition, we ran VisCap with default parameters. We used ‘run_1’ results, which were analyzed without sample QC filtering of VisCap because sample failure rates of ‘run_2’ were too large to analyze (Additional file 1: Note S15).

For the XHMM QC and filtering step, we set the parameters so that XHMM performed best for our data. To remove the gender-specific effect of the X chromosome, we used the normalized depth of coverage data by dividing the number of X chromosomes in samples from females in half. During the Filters samples and targets and then mean-centers the targets step, we set the maxSdSampleRD to 400, the minMeanTargetRD to 50, and the minMeanSampleRD to 50. For the Filters and z-score centers (by sample) the PCA-normalized data step, maxSdTargetRD was set to 400 instead of 30. Then, in the Discovers CNVs in normalized data step, we set mean number of targets in CNV to 2 and used default settings for other parameters.

For CODEX, we ran targeted sequencing with default parameter settings for the QC and CNV calling steps.

Abbreviations

BAM: 

Binary alignment/map

Bp: 

Base pairs

CBS: 

Circular binary segmentation

CI: 

Confidence interval

CN: 

Copy number

CNV: 

Copy number variant

DEL: 

Deletion

DUP: 

Duplication

GATK: 

Genome Analysis Toolkit

HC: 

Hereditary cancer

IMD: 

Inherited metabolism disorders

INDEL: 

Short insertion and deletion

MQV: 

Mapping quality value

NEU: 

Neutral

NGS: 

Next generation sequencing

PCA: 

Principal component analysis

PCR: 

polymerase chain reaction

PGM: 

The Ion Torrent Personal Genome Machine

QC: 

Quality control

qPCR: 

Quantitative polymerase chain reaction

SNV: 

Single-nucleotide variant

Declarations

Funding

This study was supported by the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea [A120030] and the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology, Republic of Korea [NRF-2017R1E1A1A03070512]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Funding for open access charge: The National Research Foundation of Korea.

Availability of data and materials

DeviCNV source code is available in GitHub (https://github.com/SD-Genomics/DeviCNV). DeviCNV is implemented in Python programming language and R.

All sequences from the cell lines analyzed in this study were submitted to the NCBI Short Read Archive databank (SRA, http://www.ncbi.nlm.nih.gov/sra) under accession number SRP103698 (SRA).

Authors’ contributions

YKang developed the algorithms, performed the experiments. S-HN analyzed and reviewed the data and the results. KSP reviewed the result and selected the pathogenic copy-number variant candidates of the clinical samples. YKim and J-WK handed samples and generated sequencing data. K-AL, IP, JMK and EL conceived and advised the project. YKang and IP wrote the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

All human samples used in this study were either exempted material (cell lines commercially available) or provided under informed consent. The use of non-exempt material has been approved by the Seoul National University IRB (H-1601-079-734), Gangnam Severance Hospital IRB (3–2016-0044), Samsung Medical Center IRB (2015–01-009).

Consent for publication

Not applicable

Competing interests

YKang, SN, KP and IP are employee of SD Genomics, Inc. YKim, JK, EL, JK and KL declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
SD Genomics Co., Ltd., 11F, Seoul Gangnam Post Office, 619 Gaepo-ro, Gangnam-gu, Seoul, 06336, Republic of Korea
(2)
Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
(3)
Department of Laboratory Medicine, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea
(4)
Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
(5)
Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, USA
(6)
Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea

References

  1. Pugh TJ, Amr SS, Bowser MJ, Gowrisankar S, Hynes E, Mahanta LM, Rehm HL, Funke B, Lebo MS. VisCap: inference and visualization of germ-line copy-number variants from targeted clinical sequencing data. Genet Med. 2015;18:712.View ArticleGoogle Scholar
  2. Fromer M, Moran Jennifer L, Chambert K, Banks E, Bergen Sarah E, Ruderfer Douglas M, Handsaker Robert E, McCarroll Steven A, O’Donovan Michael C, Owen Michael J, et al. Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am J Hum Genet. 2012;91(4):597–607.View ArticleGoogle Scholar
  3. Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, Ryland GL, Tothill RW, Halgamuge SK, Campbell IG, Gorringe KL. CONTRA: copy number analysis for targeted resequencing. Bioinformatics. 2012;28(10):1307–13.View ArticleGoogle Scholar
  4. Mason-Suares H, Landry L, Lebo MS. Detecting copy number variation via next generation technology. Curr Genet Med Rep. 2016;4(3):74–85.View ArticleGoogle Scholar
  5. Miyagawa M, Nishio S-Y, Ikeda T, Fukushima K, Usami S-I. Massively parallel DNA sequencing successfully identifies new causative mutations in deafness genes in patients with cochlear implantation and EAS. PLoS One. 2013;8(10):e75793.View ArticleGoogle Scholar
  6. Wang J, Yu H, Zhang VW, Tian X, Feng Y, Wang G, Gorman E, Wang H, Lutz RE, Schmitt ES, et al. Capture-based high-coverage NGS: a powerful tool to uncover a wide spectrum of mutation types. Genet Med. 2015;18:513.View ArticleGoogle Scholar
  7. Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet. 2007;8:639.View ArticleGoogle Scholar
  8. Ionita-Laza I, Rogers AJ, Lange C, Raby BA, Lee C. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics. 2009;93(1):22–6.View ArticleGoogle Scholar
  9. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005;307(5714):1434–40.View ArticleGoogle Scholar
  10. McKinney C, Merriman ME, Chapman PT, Gow PJ, Harrison AA, Highton J, Jones PBB, McLean L, O’Donnell JL, Pokorny V, et al. Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis. 2008;67(3):409–13.View ArticleGoogle Scholar
  11. Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL, Reinisch W, Teml A, Schwab M, Lichter P, et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet. 2006;79(3):439–48.View ArticleGoogle Scholar
  12. Hollox EJ, Huffmeier U, Zeeuwen PLJM, Palla R, Lascorz J, Rodijk-Olthuis D, van de Kerkhof PCM, Traupe H, de Jongh G, den Heijer M, et al. Psoriasis is associated with increased β-defensin genomic copy number. Nat Genet. 2007;40:23.View ArticleGoogle Scholar
  13. Liu W, Sun J, Li G, Zhu Y, Zhang S, Kim S-T, Sun J, Wiklund F, Wiley K, Isaacs SD, et al. Association of a germ-line copy number variation at 2p24.3 and risk for aggressive prostate cancer. Cancer Res. 2009;69(6):2176–9.View ArticleGoogle Scholar
  14. Frank B, Bermejo JL, Hemminki K, Sutter C, Wappenschmidt B, Meindl A, Kiechle-Bahat M, Bugert P, Schmutzler RK, Bartram CR, et al. Copy number variant in the candidate tumor suppressor gene MTUS1 and familial breast cancer risk. Carcinogenesis. 2007;28(7):1442–5.View ArticleGoogle Scholar
  15. Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DCY, Nazareth L, Bainbridge M, Dinh H, Jing C, Wheeler DA, et al. Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N Engl J Med. 2010;362(13):1181–91.View ArticleGoogle Scholar
  16. Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, Abu Rayyan A, Loulus S, Avraham KB, King M-C, et al. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet. 2010;87(1):90–4.View ArticleGoogle Scholar
  17. McCarroll SA, Altshuler DM. Copy-number variation and association studies of human disease. Nat Genet. 2007;39:S37.View ArticleGoogle Scholar
  18. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12(4):e1004873.View ArticleGoogle Scholar
  19. Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics. 2013;14(11):S1.View ArticleGoogle Scholar
  20. Pirooznia M, Goes FS, Zandi PP. Whole-genome CNV analysis: advances in computational approaches. Front Genet. 2015;6:138.View ArticleGoogle Scholar
  21. Kuilman T, Velds A, Kemper K, Ranzani M, Bombardelli L, Hoogstraat M, Nevedomskaya E, Xu G, de Ruiter J, Lolkema MP, et al. CopywriteR: DNA copy number detection from off-target sequence data. Genome Biol. 2015;16(1):49.View ArticleGoogle Scholar
  22. Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16:172.View ArticleGoogle Scholar
  23. Boeva V, Popova T, Lienard M, Toffoli S, Kamal M, Le Tourneau C, Gentien D, Servant N, Gestraud P, Rio Frio T, et al. Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data. Bioinformatics. 2014;30(24):3443–50.View ArticleGoogle Scholar
  24. Sathirapongsasuti JF, Lee H, Horst BAJ, Brunner G, Cochran AJ, Binder S, Quackenbush J, Nelson SF. Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics. 2011;27(19):2648–54.View ArticleGoogle Scholar
  25. Oliveira C, Wolf T: CNVPanelizer: Reliable CNV detection in target sequencing applications. 2018.Google Scholar
  26. Johansson LF, Dijk F, Boer EN, Dijk-Bos KK, Jongbloed JDH, der Hout AH, Westers H, Sinke RJ, Swertz MA, Sijmons RH, et al. CoNVaDING: single exon variation detection in targeted NGS data. Hum Mutat. 2016;37(5):457–64.View ArticleGoogle Scholar
  27. Jiang Y, Oldridge DA, Diskin SJ, Zhang NR. CODEX: a normalization and copy number variation detection method for whole exome sequencing. Nucleic Acids Res. 2015;43(6):e39.View ArticleGoogle Scholar
  28. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 2014;15(6):R84.View ArticleGoogle Scholar
  29. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15:121.View ArticleGoogle Scholar
  30. Gilissen C, Hoischen A, Brunner HG, Veltman JA. Unlocking Mendelian disease using exome sequencing. Genome Biol. 2011;12(9):228.View ArticleGoogle Scholar
  31. Parajes S, Quinteiro C, Domínguez F, Loidi L. High frequency of copy number variations and sequence variants at CYP21A2 locus: implication for the genetic diagnosis of 21-hydroxylase deficiency. PLoS One. 2008;3(5):e2138.View ArticleGoogle Scholar
  32. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557–72.View ArticleGoogle Scholar
  33. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, vol. 1303; 2013.Google Scholar
  34. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.View ArticleGoogle Scholar
  35. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491.View ArticleGoogle Scholar

Copyright

© The Author(s). 2018

Advertisement