Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med. 2002; 21(16):2313–24.
PubMed
Google Scholar
Rücker G. Network meta-analysis, electrical networks and graph theory. Res Synth Methods. 2012; 3(4):312–24.
PubMed
Google Scholar
Dias S, Sutton AJ, Ades A, Welton NJ. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Dec Making. 2013; 33(5):607–17.
Google Scholar
Sobieraj DM, Coleman CI, Pasupuleti V, Deshpande A, Kaw R, Hernandez AV. Comparative efficacy and safety of anticoagulants and aspirin for extended treatment of venous thromboembolism: A network meta-analysis. Thromb Res. 2015; 135(5):888–96.
CAS
PubMed
Google Scholar
Lipinski MJ, Benedetto U, Escarcega RO, Biondi-Zoccai G, Lhermusier T, Baker NC, Torguson R, Brewer Jr HB, Waksman R. The impact of proprotein convertase subtilisin-kexin type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: a network meta-analysis. Eur Heart J. 2015; 37(6):536–45.
PubMed
Google Scholar
Trelle S, Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger PM, Egger M, Jüni P. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011; 342:7086.
Google Scholar
Tseng GC, Ghosh D, Feingold E. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 2012; 40(9):3785–99.
CAS
PubMed
PubMed Central
Google Scholar
Rau A, Marot G, Jaffrézic F. Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics. 2014; 15(1):91.
PubMed
PubMed Central
Google Scholar
Sudmant PH, Alexis MS, Burge CB. Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biol. 2015; 16(1):287.
PubMed
PubMed Central
Google Scholar
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A. 2004; 101(25):9309–14.
CAS
PubMed
PubMed Central
Google Scholar
Logotheti M, Papadodima O, Venizelos N, Chatziioannou A, Kolisis F. A comparative genomic study in schizophrenic and in bipolar disorder patients, based on microarray expression profiling meta-analysis. Sci World J. 2013. Article ID 685917.
Kosch R, Delarocque J, Claus P, Becker SC, Jung K. Gene expression profiles in neurological tissues during West Nile virus infection: a critical meta-analysis. BMC Genomics. 2018; 19(1):530.
PubMed
PubMed Central
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets – update. Nucleic Acids Res. 2012; 41(D1):991–5.
Google Scholar
Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, Megy K, Pilicheva E, Rustici G, Tikhonov A, Parkinson H, Petryszak R, Sarkans U, Brazma A. ArrayExpress update – simplifying data submissions. Nucleic Acids Res. 2014; 43(D1):1113–6.
Google Scholar
Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995; 270(5235):467–70.
CAS
PubMed
Google Scholar
Anders S, Pyl PT, Huber W. Htseq – a python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31(2):166–9.
CAS
PubMed
Google Scholar
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics. 2007; 8(1):118–27.
PubMed
Google Scholar
Lazar C, Meganck S, Taminau J, Steenhoff D, Coletta A, Molter C, Weiss-Solís DY, Duque R, Bersini H, Nowé A. Batch effect removal methods for microarray gene expression data integration: a survey. Brief Bioinform. 2012; 14(4):469–90.
PubMed
Google Scholar
Nygaard V, Rødland EA, Hovig E. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics. 2016; 17(1):29–39.
PubMed
Google Scholar
Smyth GK. Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer: 2005. p. 397–420.
Google Scholar
Zhang F, Hammack C, Ogden SC, Cheng Y, Lee EM, Wen Z, Qian X, Nguyen HN, Li Y, Yao B, et al. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res. 2016; 44(18):8610–20.
CAS
PubMed
PubMed Central
Google Scholar
Dick G, Kitchen S, Haddow A. Zika virus (I). isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952; 46(5):509–20.
CAS
PubMed
Google Scholar
Kong P, Lei P, Zhang S, Li D, Zhao J, Zhang B. Integrated microarray analysis provided a new insight of the pathogenesis of Parkinson’s disease. Neurosci Lett. 2018; 662:51–8.
CAS
PubMed
Google Scholar
Liu MT, Chen BP, Oertel P, Buchmeier MJ, Armstrong D, Hamilton TA, Lane TE. Cutting edge: the T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J Immunol. 2000; 165(5):2327–30.
CAS
PubMed
Google Scholar
Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med. 1996; 184(3):963–9.
CAS
PubMed
Google Scholar
Hsieh M-F, Lai S-L, Chen J-P, Sung J-M, Lin Y-L, Wu-Hsieh BA, Gerard C, Luster A, Liao F. Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus. J Immunol. 2006; 177(3):1855–63.
CAS
PubMed
Google Scholar
Zhang B, Chan YK, Lu B, Diamond MS, Klein RS. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during west nile virus encephalitis. J Immunol. 2008; 180(4):2641–9.
CAS
PubMed
Google Scholar
Lundberg P, Openshaw H, Wang M, Yang H-J, Cantin E. Effects of CXCR3 signaling on development of fatal encephalitis and corneal and periocular skin disease in HSV-infected mice are mouse-strain dependent. Investig Ophthalmol Vis Sci. 2007; 48(9):4162–70.
Google Scholar
Zimmermann J, Hafezi W, Dockhorn A, Lorentzen EU, Krauthausen M, Getts DR, Müller M, Kühn JE, King NJ. Enhanced viral clearance and reduced leukocyte infiltration in experimental herpes encephalitis after intranasal infection of CXCR3-deficient mice. J Neurovirol. 2017; 23(3):394–403.
CAS
PubMed
Google Scholar
Zhang B, Patel J, Croyle M, Diamond MS, Klein RS. TNF- α-dependent regulation of CXCR3 expression modulates neuronal survival during West Nile virus encephalitis. J Neuroimmunol. 2010; 224(1):28–38.
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Park J-S, Deng J-H, Bai Y. Cytochrome coxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006; 38(5-6):283–91.
CAS
PubMed
PubMed Central
Google Scholar
Indrieri A, van Rahden VA, Tiranti V, Morleo M, Iaconis D, Tammaro R, D’Amato I, Conte I, Maystadt I, Demuth S, et al. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet. 2012; 91(5):942–9.
CAS
PubMed
PubMed Central
Google Scholar
Naughton BJ, Duncan FJ, Murrey DA, Meadows AS, Newsom DE, Stoicea N, White P, Scharre DW, Mccarty DM, Fu H. Blood genome-wide transcriptional profiles reflect broad molecular impairments and strong blood-brain links in alzheimer’s disease. J Alzheimers Dis. 2015; 43(1):93–108.
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Guo X, Chu J, Zhang X, Yan Z, Li Y. Potential hippocampal genes and pathways involved in Alzheimer’s disease: a bioinformatic analysis. Genet Mol Res. 2015; 14:7218–32.
CAS
PubMed
Google Scholar
Dalmau J, Gultekin SH, Voltz R, Hoard R, DesChamps T, Balmaceda C, Batchelor T, Gerstner E, Eichen J, Frennier J, et al. Ma1, a novel neuron-and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain. 1999; 122(1):27–39.
PubMed
Google Scholar
Chen H-L, D’mello SR. Induction of neuronal cell death by paraneoplastic Ma1 antigen. J Neurosci Res. 2010; 88(16):3508–19.
CAS
PubMed
PubMed Central
Google Scholar
Ware CF. Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol. 2005; 23:787–819.
CAS
PubMed
Google Scholar
Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP, Hession C, O’Brine-Greco B, Foley SF, Ware CF. Lymphotoxin β, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell. 1993; 72(6):847–56.
CAS
PubMed
Google Scholar
VanArsdale TL, VanArsdale SL, Force WR, Walter BN, Mosialos G, Kieff E, Reed JC, Ware CF. Lymphotoxin- β receptor signaling complex: role of tumor necrosis factor receptor-associated factor 3 recruitment in cell death and activation of nuclear factor κb. Proc Natl Acad Sci. 1997; 94(6):2460–5.
CAS
PubMed
PubMed Central
Google Scholar
Plow EF, Hoover-Plow J. The functions of plasminogen in cardiovascular disease. Trends Cardiovasc Med. 2004; 14(5):180–6.
CAS
PubMed
Google Scholar
Ejeskär K, Krona C, Carén H, Zaibak F, Li L, Martinsson T, Ioannou PA. Introduction of in vitro transcribed ENO1 mRNA into neuroblastoma cells induces cell death. BMC Cancer. 2005; 5(1):161.
PubMed
PubMed Central
Google Scholar
Kazmirchuk T, Dick K, Burnside DJ, Barnes B, Moteshareie H, Hajikarimlou M, Omidi K, Ahmed D, Low A, Lettl C, et al. Designing anti-Zika virus peptides derived from predicted human-Zika virus protein-protein interactions. Comput Biol Chem. 2017; 71:180–7.
CAS
PubMed
Google Scholar
Schmechel D, Brightman M, Marangos P. Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res. 1980; 190(1):195–214.
CAS
PubMed
Google Scholar
Izzo A, Kamieniarz K, Schneider R. The histone H1 family: specific members, specific functions?. Biol Chem. 2008; 389(4):333–43.
CAS
PubMed
Google Scholar
Fawaz NA, Beshlawi IO, Al Zadjali S, Al Ghaithi HK, Elnaggari MA, Elnour I, Wali YA, Al-Said BB, Rehman JU, Pathare AV, et al. dRTA and hemolytic anemia: first detailed description of SLC4A1 A858D mutation in homozygous state. Eur J Haematol. 2012; 88(4):350–5.
CAS
PubMed
Google Scholar
Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, Daugaard JR, Lloberas J, Camps M, Zierath JR, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism a novel regulatory mechanism altered in obesity. J Biol Chem. 2003; 278(19):17190–7.
CAS
PubMed
Google Scholar
Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci. 2013; 110(44):17963–8.
CAS
PubMed
PubMed Central
Google Scholar
Yasukawa K, Oshiumi H, Takeda M, Ishihara N, Yanagi Y, Seya T, Kawabata S-i, Koshiba T. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal. 2009; 2(84):47.
Google Scholar
Nazar M, Nicola JP, Vélez ML, Pellizas CG, Masini-Repiso AM. Thyroid peroxidase gene expression is induced by lipopolysaccharide involving nuclear factor (NF)- κb p65 subunit phosphorylation. Endocrinology. 2012; 153(12):6114–25.
CAS
PubMed
Google Scholar
Grinde B, Gayorfar M, Rinaldo CH. Impact of a polyomavirus (BKV) infection on mRNA expression in human endothelial cells. Virus Res. 2007; 123(1):86–94.
CAS
PubMed
Google Scholar
Wu S, Zhang X, Li Z-M, Shi Y-X, Huang J-J, Xia Y, Yang H, Jiang W-Q. Partial least squares based gene expression analysis in ebv-positive and ebv-negative posttransplant lymphoproliferative disorders. Asian Pac J Cancer Prev. 2013; 14(11):6347–50.
PubMed
Google Scholar
Munoz-Erazo L, Natoli R, Provis JM, Madigan MC, King NJC. Microarray analysis of gene expression in West Nile virus–infected human retinal pigment epithelium. Mol Vis. 2012; 18:730.
CAS
PubMed
PubMed Central
Google Scholar
Poorebrahim M, Salarian A, Najafi S, Abazari MF, Aleagha MN, Dadras MN, Jazayeri SM, Ataei A, Poortahmasebi V. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis. Arch Virol. 2017; 162(5):1299–309.
CAS
PubMed
Google Scholar
Hornung R, Boulesteix A-L, Causeur D. Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment. BMC Bioinformatics. 2016; 17(1):27.
PubMed
PubMed Central
Google Scholar