Gainza-Cirauqui P, Correia BE. Computational protein design-the next generation tool to expand synthetic biology applications. Curr Opin Biotechnol. 2018;52:145–52.
Article
CAS
Google Scholar
Taylor WR, Chelliah V, Hollup SM, MacDonald JT, Jonassen I. Probing the "dark matter" of protein fold space. Structure. 2009;17(9):1244–52.
Article
CAS
Google Scholar
Pierce NA, Winfree E. Protein design is NP-hard. Protein Eng. 2002;15(10):779–82.
Article
CAS
Google Scholar
Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA, Chen CY, et al. OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol. 2013;523:87–107.
Article
CAS
Google Scholar
Chen CY, Georgiev I, Anderson AC, Donald BR. Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci U S A. 2009;106(10):3764–9.
Article
CAS
Google Scholar
Frey KM, Georgiev I, Donald BR, Anderson AC. Predicting resistance mutations using protein design algorithms. Proc Natl Acad Sci U S A. 2010;107(31):13707–12.
Article
CAS
Google Scholar
Bolon DN, Mayo SL. Enzyme-like proteins by computational design. Proc Natl Acad Sci U S A. 2001;98(25):14274–9.
Article
CAS
Google Scholar
Dahiyat BI, Mayo SL. De novo protein design: fully automated sequence selection. Science. 1997;278(5335):82–7.
Article
CAS
Google Scholar
Shimaoka M, Shifman JM, Jing H, Takagi J, Mayo SL, Springer TA. Computational design of an integrin I domain stabilized in the open high affinity conformation. Nat Struct Biol. 2000;7(8):674–8.
Article
CAS
Google Scholar
Li Z, Scheraga HA. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci U S A. 1987;84(19):6611–5.
Article
CAS
Google Scholar
Gainza P, Nisonoff HM, Donald BR. Algorithms for protein design. Curr Opin Struct Biol. 2016;39:16–26.
Article
CAS
Google Scholar
Alford RF, Leaver-Fay A, Jeliazkov JR, O'Meara MJ, DiMaio FP, Park H, et al. The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13(6):3031–48.
Article
CAS
Google Scholar
Simons KT, Bonneau R, Ruczinski I, Baker D. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins. 1999;Suppl 3:171–6.
Article
CAS
Google Scholar
Kim DE, Blum B, Bradley P, Baker D. Sampling bottlenecks in de novo protein structure prediction. J Mol Biol. 2009;393(1):249–60.
Article
Google Scholar
Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A. 2000;97(19):10383–8.
Article
CAS
Google Scholar
Rosetta Commons. Rosetta Tools: https://www.rosettacommons.org/docs/latest/application_documentation/tools/Tools. 2018.
Pérez F, Granger EB. IPython: a system for interactive scientific computing. Comput Sci Eng. 2007;9(3):21–9.
Article
Google Scholar
McKinney W. Data structures for statistical computing in Python. In: Proceedings of the 9th Python in science conference; 2010. p. 51–6.
Google Scholar
Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18(20):6097–100.
Article
CAS
Google Scholar
Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963;7:95–9.
Article
CAS
Google Scholar
Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002;00(1):2.3.1-2.3.22. Chapter 2:Unit 2 3.
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46(W1):W200–W4.
Article
CAS
Google Scholar
Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.
Article
Google Scholar
Michael Waskom OB, Drew O'Kane, Paul Hobson, Joel Ostblom, Saulius Lukauskas, Adel Qalieh. mwaskom/seaborn: v0.9.0 Zenodo. 2018.
Stein A, Kortemme T. Improvements to robotics-inspired conformational sampling in rosetta. PLoS One. 2013;8(5):e63090.
Article
CAS
Google Scholar
Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein fold with atomic-level accuracy. Science. 2003;302(5649):1364–8.
Article
CAS
Google Scholar
Marcos E, Basanta B, Chidyausiku TM, Tang Y, Oberdorfer G, Liu G, et al. Principles for designing proteins with cavities formed by curved beta sheets. Science. 2017;355(6321):201–6.
Article
CAS
Google Scholar
Bonet J, Wehrle S, Schriever K, Yang C, Billet A, Sesterhenn F, et al. Rosetta FunFolDes - a general framework for the computational design of functional proteins. PLoS Comput Biol. 2018;14(11):e1006623.
Article
Google Scholar
McLellan JS, Chen M, Kim A, Yang Y, Graham BS, Kwong PD. Structural basis of respiratory syncytial virus neutralization by motavizumab. Nat Struct Mol Biol. 2010;17(2):248–50.
Article
CAS
Google Scholar
Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, et al. X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem. 2002;277(35):32094–8.
Article
CAS
Google Scholar
Sillitoe I, Dawson N, Lewis TE, Das S, Lees JG, Ashford P, et al. CATH: expanding the horizons of structure-based functional annotations for genome sequences. Nucleic Acids Res. 2018;47(D1):D280–4.
Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, et al. A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell. 2014;157(7):1644–56.
Article
CAS
Google Scholar
Coleman RG, Carchia M, Sterling T, Irwin JJ, Shoichet BK. Ligand pose and orientational sampling in molecular docking. PLoS One. 2013;8(10):e75992.
Article
CAS
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data Bank. Nucleic Acids Res. 2000;28(1):235–42.
Article
CAS
Google Scholar
Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, et al. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 2008;36(Database issue):D419–25.
CAS
PubMed
Google Scholar