Levy SE, Myers RM. Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet. 2016; 17:95–115.

CAS
PubMed
Google Scholar

Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen TS, Somel M, Babbitt C, et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell. 2014; 157(4):785–94.

CAS
PubMed
PubMed Central
Google Scholar

Ilardo M, Nielsen R. Human adaptation to extreme environmental conditions. Curr Opin Genet Dev. 2018; 53:77–82.

CAS
PubMed
PubMed Central
Google Scholar

Vasseur E, Quintana-Murci L. The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evol Appl. 2013; 6(4):596–607.

PubMed
PubMed Central
Google Scholar

Karlsson EK, Kwiatkowski DP, Sabeti PC. Natural selection and infectious disease in human populations. Nat Rev Genet. 2014; 15(6):379.

CAS
PubMed
PubMed Central
Google Scholar

Horscroft C, Ennis S, Pengelly RJ, Sluckin TJ, Collins A. Sequencing era methods for identifying signatures of selection in the genome. Brief Bioinform. 2018; :bby064.

Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006; 4(3):72.

Google Scholar

Booker TR, Jackson BC, Keightley PD. Detecting positive selection in the genome. BMC Biol. 2017; 15(1):98.

PubMed
PubMed Central
Google Scholar

Tajima F. Statistical method for testing the neutral mutation hypothesis by dna polymorphism. Genetics. 1989; 123(3):585–95.

CAS
PubMed
PubMed Central
Google Scholar

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007; 449(7164):913.

CAS
PubMed
PubMed Central
Google Scholar

Cunha L, Diekmann Y, Kowada L, Stoye J. Identifying maximal perfect haplotype blocks. Lect Notes Comput Sci. 2018;11228.

Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol. 2010; 20(4):208–15.

Google Scholar

Peter BM, Huerta-Sanchez E, Nielsen R. Distinguishing between selective sweeps from standing variation and from a de novo mutation. PLoS Genet. 2012; 8(10):1003011.

Google Scholar

Duforet-Frebourg N, Luu K, Laval G, Bazin E, Blum MG. Detecting genomic signatures of natural selection with principal component analysis: application to the 1000 genomes data. Mol Biol Evol. 2015; 33(4):1082–93.

PubMed
PubMed Central
Google Scholar

Ronen R, Udpa N, Halperin E, Bafna V. Learning natural selection from the site frequency spectrum. Genetics. 2013; 195(1):181–93.

PubMed
PubMed Central
Google Scholar

Schrider DR, Kern AD. S/hic: robust identification of soft and hard sweeps using machine learning. PLoS Genet. 2016; 12(3):1005928.

Google Scholar

Sugden LA, Atkinson EG, Fischer AP, Rong S, Henn BM, Ramachandran S. Localization of adaptive variants in human genomes using averaged one-dependence estimation. Nat Commun. 2018; 9(1):703.

PubMed
PubMed Central
Google Scholar

Kotsiantis SB, Zaharakis I, Pintelas P. Supervised machine learning: A review of classification techniques. Emerg Artif Intell Appl Comput Eng. 2007; 160:3–24.

Google Scholar

Jones N. Computer science: The learning machines. Nat News. 2014; 505(7482):146.

CAS
Google Scholar

Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci. 1982; 79(8):2554–8.

CAS
PubMed
PubMed Central
Google Scholar

Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf Fusion. 2019; 50:71–91.

PubMed
Google Scholar

Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst. 2018; 29(6):2063–79.

PubMed
Google Scholar

Schrider DR, Kern AD. Supervised machine learning for population genetics: a new paradigm. Trends Genet. 2018; 34(4):301–12.

CAS
PubMed
PubMed Central
Google Scholar

Sheehan S, Song YS. Deep learning for population genetic inference. PLoS Comput Biol. 2016; 12(3):1004845.

Google Scholar

Kern AD, Schrider DR. diplos/hic: an updated approach to classifying selective sweeps. G3: Genes Genomes Genet. 2018; 8(6):1959–70.

Google Scholar

Marnetto D, Huerta-Sánchez E. Haplostrips: revealing population structure through haplotype visualization. Methods Ecol Evol. 2017; 8(10):1389–92.

Google Scholar

Huerta-Sánchez E, Jin X, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, et al. Altitude adaptation in tibetans caused by introgression of denisovan-like dna. Nature. 2014; 512(7513):194.

PubMed
PubMed Central
Google Scholar

Flagel L, Brandvain Y, Schrider DR. The unreasonable effectiveness of convolutional neural networks in population genetic inference. Mol Biol Evol. 2018; 36(2):220–38.

PubMed Central
Google Scholar

Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, et al. Recent advances in convolutional neural networks. Pattern Recogn. 2018; 77:354–77.

Google Scholar

Chan J, Perrone V, Spence J, Jenkins P, Mathieson S, Song Y. A likelihood-free inference framework for population genetic data using exchangeable neural networks. In: Advances in Neural Information Processing Systems: 2018. p. 8594–8605.

Ewing G, Hermisson J. Msms: a coalescent simulation program including recombination, demographic structure and selection at a single locus. Bioinformatics. 2010; 26(16):2064–5.

CAS
PubMed
PubMed Central
Google Scholar

Marth GT, Czabarka E, Murvai J, Sherry ST. The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations. Genetics. 2004; 166(1):351–72.

CAS
PubMed
PubMed Central
Google Scholar

Consortium GP, et al. A global reference for human genetic variation. Nature. 2015; 526(7571):68.

Google Scholar

Fledel-Alon A, Leffler EM, Guan Y, Stephens M, Coop G, Przeworski M. Variation in human recombination rates and its genetic determinants. PLoS ONE. 2011; 6(6):20321.

Google Scholar

Scally A, Durbin R. Revising the human mutation rate: implications for understanding human evolution. Nat Rev Genet. 2012; 13(10):745.

CAS
PubMed
Google Scholar

Chollet F, et al. Keras. 2015. https://keras.io.

Richard MD, Lippmann RP. Neural network classifiers estimate bayesiana posterioriprobabilities. Neural Comput. 1991; 3(4):461–83.

PubMed
Google Scholar

Mou C, Thomason HA, Willan PM, Clowes C, Harris WE, Drew CF, Dixon J, Dixon MJ, Headon DJ. Enhanced ectodysplasin-a receptor (edar) signaling alters multiple fiber characteristics to produce the east asian hair form. Hum Mutat. 2008; 29(12):1405–11.

CAS
PubMed
Google Scholar

Adhikari K, Fuentes-Guajardo M, Quinto-Sánchez M, Mendoza-Revilla J, Chacón-Duque JC, Acuña-Alonzo V, Jaramillo C, Arias W, Lozano RB, Pérez GM, et al. A genome-wide association scan implicates dchs2, runx2, gli3, pax1 and edar in human facial variation. Nat Commun. 2016; 7:11616.

CAS
PubMed
PubMed Central
Google Scholar

Bryk J, Hardouin E, Pugach I, Hughes D, Strotmann R, Stoneking M, Myles S. Positive selection in east asians for an edar allele that enhances nf- *κ*b activation. PLoS ONE. 2008; 3(5):2209.

Google Scholar

Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002; 419(6909):832.

CAS
PubMed
Google Scholar

Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011; 475(7357):493.

CAS
PubMed
PubMed Central
Google Scholar

Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat Genet. 2014; 46(8):919.

CAS
PubMed
PubMed Central
Google Scholar

Jouganous J, Long W, Ragsdale AP, Gravel S. Inferring the joint demographic history of multiple populations: beyond the diffusion approximation. Genetics. 2017; 206(3):1549–67.

PubMed
PubMed Central
Google Scholar

Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet. 2017; 49(2):303.

CAS
PubMed
Google Scholar

Olson RS, La Cava W, Mustahsan Z, Varik A, Moore JH. Data-driven advice for applying machine learning to bioinformatics problems. 2017. arXiv preprint arXiv:1708.05070.

Shashua A, Levin A. Ranking with large margin principle: Two approaches. In: Advances in Neural Information Processing Systems: 2003. p. 961–968.

Way GP, Greene CS. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. BioRxiv. 2017:174474.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014; 15(1):1929–58.

Google Scholar

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al. Mastering the game of go with deep neural networks and tree search. Nature. 2016; 529(7587):484.

CAS
PubMed
Google Scholar

Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput Biol. 2016; 12(5):1004842.

Google Scholar

Haller BC, Messer PW. Slim 2: Flexible, interactive forward genetic simulations. Mol Biol Evol. 2016; 34(1):230–40.

PubMed
Google Scholar

Kelleher J, Thornton KR, Ashander J, Ralph PL. Efficient pedigree recording for fast population genetics simulation. PLoS Comput Biol. 2018; 14(11):1006581.

Google Scholar

Haller BC, Galloway J, Kelleher J, Messer PW, Ralph PL. Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole genomes. Mol Ecol Resour. 2019; 19(2):552–66.

PubMed
PubMed Central
Google Scholar

Pavlidis P, živković D, Stamatakis A, Alachiotis N. Sweed: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol. 2013; 30(9):2224–34.

CAS
PubMed
PubMed Central
Google Scholar

Pavlidis P, Alachiotis N. A survey of methods and tools to detect recent and strong positive selection. J Biol Res-Thessaloniki. 2017; 24(1):7.

Google Scholar

Keightley PD, Jackson BC. Inferring the probability of the derived vs. the ancestral allelic state at a polymorphic site. Genetics. 2018; 209(3):897–906.

PubMed
PubMed Central
Google Scholar

Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010; 329(5987):75–78.

CAS
PubMed
PubMed Central
Google Scholar

Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jørgensen ME, Korneliussen TS, Gerbault P, Skotte L, Linneberg A, et al. Greenlandic inuit show genetic signatures of diet and climate adaptation. Science. 2015; 349(6254):1343–7.

CAS
PubMed
Google Scholar

Malaspinas AS, Malaspinas O, Evans SN, Slatkin M. Estimating allele age and selection coefficient from time-serial data. Genetics. 2012; 192(2):599–607.

PubMed
PubMed Central
Google Scholar

Andrés AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, Gutenkunst RN, White TJ, Green ED, Bustamante CD, et al. Targets of balancing selection in the human genome. Mol Biol Evol. 2009; 26(12):2755–64.

PubMed
PubMed Central
Google Scholar

Messer PW, Petrov DA. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol. 2013; 28(11):659–69.

PubMed
Google Scholar

Albrechtsen A, Nielsen FC, Nielsen R. Ascertainment biases in snp chips affect measures of population divergence. Mol Biol Evol. 2010; 27(11):2534–47.

CAS
PubMed
PubMed Central
Google Scholar

Grossman SR, Shylakhter I, Karlsson EK, Byrne EH, Morales S, Frieden G, Hostetter E, Angelino E, Garber M, Zuk O, Lander ES. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science. 2010; 327(5967):883–6.

CAS
PubMed
Google Scholar

Bellot P, de los Campos G, Pérez-Enciso M. Can deep learning improve genomic prediction of complex human traits?. Genetics. 2018; 210(3):809–19.

CAS
PubMed
PubMed Central
Google Scholar

Brinkworth JF, Barreiro LB. The contribution of natural selection to present-day susceptibility to chronic inflammatory and autoimmune disease. Curr Opin Immunol. 2014; 31:66–78.

CAS
PubMed
PubMed Central
Google Scholar